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Abstract. In the context of sound and vibration control of mechanical systems, the use of viscoelastic materials has 
been regarded as a convenient strategy in many types of industrial applications. More recently, viscoelastic materiais 
have been combined with piezoelectric materials in a hybrid passive-active control strategy known as active 
constraining damping layers. In this context, numerical models based on finite element discretization have been 
frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such 
models must account for the typical dependency of the viscoelastic characteristics on operational and environmental 
parameters, such as frequency and temperature. In the analysis and optimal design of structural systems based on 
numerical models, sensitivity analysis is a very usefull tool. In this paper, the formulation of sensitivity analysis is 
developed for plates treated with constraining damping layers, considering complex frequency response functions as 
dynamic responses and goemetrical characteristics, such as the thicknesses of the multi-layer components, as design 
variables. Also, the sensitivity of the frequency responses functions with respect to temperature is introduced. As 
examples, response derivatives are calculated for a three-layer plate and the results obtained are compared with first-
order finite-difference approximations. 
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1. Introduction. 
 

Passive damping approaches to the problem of vibration attenuation constitute an important subject in modern 
Mechanical Engineering. The use of viscoelastic materials to reduce noise and vibration levels in various types of 
engineering systems such as robots, automobiles, airplanes, communication satellites, buildings and space structures has 
been intensively investigated lately. Much of the knowledge available to date is compiled in the books by Nashif et al. 
(1985) and Mead (1998) and in some review papers such as those by Rao (2001) and Samali and Kwok (1995). 

In the last two decades, a great deal of effort has been devoted to the development of mathematical models for the 
dynamic behavior of viscoelastic materials, accounting for its typical dependence on operational and environmental 
effects, such as the excitation frequency, static preloads and temperature (Christensen, 1982). Some of those models are 
considered to be particularly suitable to be used in combination with finite element discretization, which makes them 
very attractive for the modeling of complex engineering systems. Among those models, it should be mentioned the so-
called Fractional Derivative Model (FDM) (Bagley and Torvik, 1979, 1983, 1985), the Golla-Hughes-McTavish Model 
(GHM) (Golla and Hughes, 1985; McTavish and Hughes, 1993) and the Anelastic Displacement Fields Model (ADF) 
suggested by Lesieutre and co-workers (Lesieutre, 1992; Lesieutre and Bianchini, 1995; Lesieutre and Lee, 1996). 
These models can represent the viscoelastic behavior in the frequency domain. Moreover, the GHM and ADF models 
can also provide convenient time domain representations. For themorheologically-simple viscoelastic materials, the 
influence of temperature can be accounted for based on the concept of reduced frequency, according to the relation 
proposed by Drake and Soovere (1984). 

In the context of analysis and design of structural systems, an important topic to be addressed is the so-called 
sensitivity analysis, which enables to evaluate the effect of variations of physical and/or geometrical parameters on the 
mechanical behavior. Moreover, sensitivity analysis constitutes an important step in various types of problems such as 
model updating, optimal design, system identification and control. 

The sensitivity analysis is based on the evaluation of the derivatives (most frequently limited to the first order) of the  
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system response with respect to a set of parameters of interest. It can be associated to different kinds of mechanical 
responses: static displacements, eigenvalues and eigenvectors, frequency response functions and time responses (Haug 
et al., 1986). According to Murthy and Haftka (1988), the optimal design structural systems has a narrow connection 
with sensitivity analysis, since a significant part of typical optimization algorithms generally perform a large number of 
evaluations of the system response for different values of the design variables. Derivatives can be used to approximate 
the response of modified systems, thus reducing the cost of re-analysis, specially for high-order systems. 

Several approaches are available for performing sensitivity analysis of dynamic responses, such as the Modal 
Method (Fox and Kapoor, 1968), Nelson’s Method (Nelson, 1976) and the Improved Modal Method (Lim et al., 1987). 
However, applications to the case of structural systems containing viscoelastic components are not numerous. 

In this remainder, sensitivity analysis is applied to plates treated with surface constraining damping layer treatments, 
considering, as dynamic responses, complex frequency response functions. As design parameters, goemetrical 
characteristics, such as the thicknesses of the multi-layer components are considered. Also, an approach for evaluating 
the sensitivity of the frequency responses functions with respect to temperature is introduced. To illustrate the use of the 
formulation developed, response derivatives are calculated for a three-layer sandwich plate and the results obtained are 
compared with first-order finite-difference approximations. 
 
2. The complex modulus approach. 
 

According to the linear theory of viscoelasticity (Christensen, 1982), the one-dimensional stress-strain relation can 
be expressed, in Laplace domain, as follows: 
 

( ) ( ) ( )sεsGsσ =                                                                                                                                                              (1) 
 
where: 
 

( ) ( )sHGsG r +=                                                                                                                                                           (2) 
 

In the equation above, G  is the static modulus, representing the elastic behavior and  is the relaxation 
function, associated to the dissipation effects. When evaluated along the imaginary axes of the s-plane (

r ( )sH
)ωis = , the 

complex modulus and the capacity of dissipation of the viscoelastic materials, are expressed in the following forms: 
 

( ) ( ) ( )ωGiωGωG ′′+′=                                                                                                                                                 (3) 
 

( ) ( ) ( )ωGωGωη ′′′=                                                                                                                                                     (4) 
 
where ,  and ( )ωG′ ( )ωG ′′ ( )ωη  are defined, respectively, as storage modulus, loss modulus and loss factor of the 
viscoelastic materials. 
 
3. Influence of temperature on the viscoelastic behavior. 
 

According to Nashif et al. (1985), the temperature is usually considered to be the single most important 
environmental factor affecting the properties of viscoelastic materials. This makes it important to account for this factor 
in the modeling of structural systems containing viscoelastic elements. This is possible by making use of the so-called 
Frequency-Temperature Superposition Principle - FTSP, which establishes an relation between the effects of the 
excitation frequency and temperature on the proprieties of the thermorheologically simple viscoelastic materials. This 
relation leads to a function of the temperature known as the shift factor, which implies that the viscoelastic behavior at 
different temperatures can be related to each other by changes (or shifts) in the actual values of the excitation frequency. 
This leads to the concept of reduced frequency (Christensen, 1982). Symbolically, the FTSP can be expressed under the 
following forms: 
 

( ) ( ) ( zTzr Tω,αGT,ωGTω,G == )

)

                                                                                                                                (5) 
 

( ) ( zT Tω,αηT,ωη =r                                                                                                                                                    (6) 
 
where  is the reduced frequency,  is the actual frequency, ( )ωTαω Tr = ω ( )TTα  is the shift function that must be 
identified from experimental tests for a specific type of viscoelastic material, and T  is a reference value of 
temperature. 

z

Figure 1 illustrates the FTSP, showing that having the modulus and loss factor of an arbitrary viscoelastic material 
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Figure 1. Illustration of the Frequency-Temperature Superposition Principle (adapted from Nashif et al. (1985)). 
 
4. Viscoelastic behavior incorporated into finite element models. 
 

The finite element equations of motion of viscoelastic structure containing  degrees of freedom can be expressed 
as follows: 

N

 
( ) ( ) ( ) ( ) ( )ttTω,tt qKqCqM ++                                                                                                                               (7) 

 
where  are the mass (symmetric, positive-definite), damping (symmetric, nonnegative-definite),  ( ) NxNRTω,,, ∈KCM

and stiffness (symmetric, nonnegative-definite) matrices. ( ) ( ) NRt,t ∈Fq  are the vectors of displacement and external 
loads, respectively. 

It is assumed that the structure contains both elastic and viscoelastic elements, so that the stiffness matrix can be 
decomposed as follows: 
 

( ) ( Tω,Tω, ve KKK += )

)

                                                                                                                                             (8) 
 
where  is the stiffness matrix corresponding to the purely elastic substructure and  is the stiffness matrix 
associated with the viscoelastic substructure. The inclusion of the frequency-dependent behavior of the viscoelastic 
material can be made by using the so-called elastic-viscoelastic correspondence principle (Christensen, 1982), 
according to which, for a given temperature, 

eK ( Tω,vK

( )Tω,vK  is first generated for specific types of elements (rods, beam, 
plates, etc.) assuming that the longitudinal modulus ( )Tω,E  and/or the shear modulus ( )Tω,G  (according to the stress-
state) are constant, independent on frequency. After the finite element matrix is constructed, such moduli are made 
frequency-dependent according to a particular viscoelastic constitutive model adopted. Moreover, by assuming a 
constant Poisson ratio for the viscoelastic material, ( )Tω,E  becomes proportional to  through the relation ( Tω,G )

)( ) ( ) ( ν12Tω,Tω,G +E= . Then, of the two moduli can be factored-out of the stiffness matrix of the viscoelastic sub-
structures. By writing: 
 

( ) ( ) vv KK Tω,GTω, =                                                                                                                                                  (9) 
 
equations (7), (8) and (9) are combined to give: 
 

( ) ( ) (( ) ( ) ( )ttω,Gtt fqKqCqM ve =+++                                                                                                             (10) 
 

The difficulty in dealing with Eq. (10) for predicting the vibration response in the time domain and performing 
eigenvalue analysis commes from the fact that the stiffness matrix is not constant and depends on frequency. Some 
procedures for overcoming such difficulty have been suggested, based on the adoption of particular representations for 
the frequency-dependent behavior of the viscoelastic materials. Such an approach is used in the Fractional Derivative, 
Golla-Hughes-McTavish and Anelastic Displacement Field models (see references in Section 1), which enable to 
transform Eq. (10) into state-space equations of motion with constant (frequency-independent) state matrices. Equation 
(10) can be directly used for calculating the steady-state harmonic responses in the frequency domain, by assuming: 
 

( ) tFf iωet =                                                                                                                                                            (11.a) 
 

( ) ( ) tiQq ω= eωt                                                                                                                                                        (11.b) 



Upon introduction of Eqs. (11) into Eq. (10), the following relation is obtained between the amplitudes of the  
excitation forces and the amplitudes of the harmonic responses: 
 

( ) ( )FHQ Tω,ω =                                                                                                                                                       (12) 
 
where the so-named frequency response function (FRF) matrix is expressed as: 
 

( ) ( )[ 12 −
+++ω−= ve KKCMH Tω,GiωTω, ]                                                                                                         (13) 

 
In this paper, based on Eq. (13), we consider the sensitivity of FRFs with respect to physical and/or geometrical 

parameters featuring in the finite element matrices and also with respect to the temperature. 
 
5. A three-layer sandwich plate finite element. 
 

In this section the formulation of a three-layer sandwich plate finite element is summarized based on the original 
development made by Kathua and Cheung (1973). Figure 2 depicts a rectangular element formed by an elastic base-
plate, a viscoelastic core and an elastic constraining layer, whose dimensions in directions x  and  are denoted by  
and , respectively. In the remainder, superscripts (1), (2) and (3) are used to identify the quantities pertaining the base-
plate, the viscoelastic core and the constraining layer, respectively. 
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b

Space discretization is made by considering 4 nodes and 7 degrees-of-freedom per node, representing the nodal 
longitudinal displacements of the base-plate middle plane in directions x  and  (denoted by  e v ), the nodal 
longitudinal displacements of the constraining layer middle plane in directions 
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x  and  (denoted by u  e ), the 
nodal transverse displacement, , and the nodal cross-section rotations of the layers about axes

y 3 3v
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 and θ , respectively. The vectors of nodal and element degrees-of-freedom are then expressed as follows: 
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Figure 2. Three-layer sandwich plate finite element. 
 

The following assumptions are adopted: 
 

• normal stresses and strains in direction z are neglected for all the three layers. 
• the elastic layers (base-plate and constraining layer) are modeled according to Kirchhoff’s theory which 

neglects the effects associated to transverse (thickness-wise) shear; 
• for the the viscoelastic core, Mindlin’s theory is adopted, which includes transverse shear; 
• the transverse displacement w is the same for all the three layers and cross-section rotations  and  are 

assumed to be the same for both the elastic layers. 
xθ yθ

 
By imposing kinematic relations that enforce the continuity of displacements along the interfaces between the 

layers, the following expressions are found for the longitudinal displacements of the viscoelastic core middle plane in 
directions  and  in terms of previously defined nodal coordinates: x y
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The longitudinal and transverse displacements are interpolated within the element as follows: 
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Based on the hypotheses of the stress-states assumed for each layer, the following stress-strain relations apply: 

 
• For the base-plate: 
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• For the viscoelastic core: 
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• For the constraining layer: 
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where matrices  are formed by derivatives of the shape functions according to the differential operators 
appearing in the strain-displacement relations for each layer. 

( ) ( 1,2,3k =kD )

 
Based on the stress-strain relations above, neglecting viscous damping, the strain and kinetic energies of the 

composite plate element are formulated. Lagrange equations are then used, considering the nodal displacements and 
rotations as generalized coordinates,  to obtain the element stiffness and mass matrices. Such procedure has been fully 
developed by Stoppa (2003) using symbolic computation. 

According to Eqs. (8) and (9), the element stiffness matrix can be expressed as follows: 
 

( ) ( )31 KKKe += , ( ) ( ) ( ) ( ) ( )22 KKKv Tω,GTω,Tω, ==                                                                                           (20) 
 
where ( )1K , ( )3K  and  are, respectively, the element stiffness matrices of the base-plate, constraining layer 
and viscoelastic core. 

( ) ( Tω,2K )

 
The assembling of element matrices into global matrices follows the standard procedure based on the enforcement 

of connectivity expressing rotation and displacement continuity between neighborg elements through common nodes 
(Maia et al., 1997). 



6. Sensitivity analysis of structural responses. 
 

The global finite element matrices, ,  and M C ( )Tω,K  appearing in Eq. (7), establish the dependency of the 
response of the system with respect to a set of design parameters, which include physical and geometrical 
characteristics and also the temperature. Such functional dependency can be expressed in a general manner as follows: 
 

( ) ( ) ( )( pKpCpMrr ,,= )                                                                                                                                             (21) 
 
where  and  designate vectors of structural responses and design parameters, respectively. r p
 

The sensitivity of the structural responses with respect to a given parameter , evaluated for a prescribed set of 

design parameter  is defined as the following partial derivative: 
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where  is a variation applied to the initial value parameter , while all other parameters remain unchanged. i∆p 0

ip
 

The sensitivity with respect to a given parameter  can be estimated by finite differences by computing 

successively the responses corresponding to  and  and then computing: 
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Such approach is in general not efficient from the computation point of view. Moreover, the results depend upon the 

choice of the value of the parameter increment ip∆ . 
Another strategy consists in computing the analytical derivatives of the structural responses with respect to the 

parameters of interest. This approach is considered in the following sections. 
 
6.1. Sensitivity of frequency response functions with respect to structural parameters. 
 

Consider the FRF matrix of a viscoelastically damped system as given by Eq. (13). Sensitivity with respect to a 
given structural parameter can be computed by deriving the relation ( ) ( ) IHH =− pω,pω, 1 , which leads to the 
following expression: 
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Regarding the equation above, it should be noted that when parameter  appears explicitly in matrices and/or ip M

C  and/or K  (and this is frequently the case), the derivatives of these matrices with respect to such parameter is 
straightforward. 
 
6.2. Sensitivity of the frequency response functions with respect of temperature. 
 

The computation of the derivatives of FRFs with respect to temperature requires that such paramter appear explicity 
in the stiffness matrix of the viscoelastic substructure. With this aim, a procedure suggested in Section 3, based on the 
use of the frequency-temperature equivalence principle and the concept of reduced frequency can be used for the 
thermorheologically simple viscoelastic materials. 

By combining Eqs. (5) and (13) with (24), one writes: 
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Based on relations (5) and (6), the derivative of the complex modulus with respect to the temperature can be 

computed as follows: 
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where the functions G  and  are given for a specific viscoelastic material. ( rω ( )TαT

 
7. Numerical applications to plates treated with passive constraining damping layer. 
 

To illustrate the procedure for computation of the sensitivity of FRFs with respect to thickness and temperature, 
numerical tests were performed on the FE model of a freely suspended plate made of aluminum, fully treated with a 
constraining damping layer made of a layer of 3M™ ISD112 viscoelastic material and an outer aluminum sheet as 
shown in Fig. 3. The FE model, whose physical and geometrical characteristics are given in Tab. 1, has a total number 
of 80 finite elements, 99 nodes and 693 degrees-of-freedom. The computations consisted in obtaining the sensitivities of 
the driving point FRFs corresponding to the point I indicated on Fig. 3, denoted by ( )pT,ω,IIH . 
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Figure 3. Illustration of the FE model of a free plate with full surface treatment. 

 
Table 1. Physical and geometrical properties of FE model of the three-layer plate. 

Layer Thickness [m] Modulus [N/m2] Poisson ratio Density [kg/m3] 
Constraining 0.5x10-3 70.3x109 0.345 2750 
Viscoelastic 20.0x10-5 --- 0.500 1099.5 
Base-plate 3.0x10-3 70.3x109 0.345 2750 

 
As the result of a comprehensive experimental work, Drake and Soovere (1984) proposed the following analytical 

expressions to represent the complex modulus and the shift factor as functions of the reduced frequency for 
temperatures in the interval [210K – 360K] and frequencies in the interval [1Hz – 1x106Hz], for the 3M™ISD112 
viscoelastic material: 
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The derivatives of Eqs. (28) and (29) with respect to rω  and , are given by the following expressions: T
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For the purpose of illustration, Fig. 4 depicts the curves representing the variations of the storage modulus, loss 

modulus and loss factor as functions of the reduced frequency, as obtained from Eq. (28), and the plot of the shift factor 
as a function of the temperature, as given by Eq. (29). 
 

      
 

Figure 4. Master and shift factor curves for the 3M™ISD112 viscoelastic material. 
 
7.1. Sensitivity of FRF with respect to structural parameters. 
 

In this example, the thicknesses of the constraining and viscoelastic layers were considered as design variables in the 
computation of the sensitivities of the FRF ( )pT,ω,IIH

( )pT ,,

. The results obtained by using the first-order derivatives 
according to Eq. (24), as compared to the corresponding values calculated by finite differences (having been adopted a 
variation from 2.5% of the nominal values of the parameters given in Table 1), are shown in Fig. 5. In the same figure, 
the real and imaginary parts of the FRF H II ω , multiplied by convenient scale factors, are also shown. This 
figure enables to evaluate the accuracy of the computed derivatives, as demonstrated by their agreement with the results 
obtained by finite differences. In addition, based on the amplitudes of the sensitivity functions one can draw important 
information about the degree of influence of the design variables upon the amplitudes of the FRF and, in particular, on 
the resonance peaks. 
 

      
 

Figure 5. FRF sensitivities with respect to the thicknesses of the viscoelastic and constraining layers. 
 

Figure 6 shows the real and imaginary parts of the sensitivities of the FRF with respect to temperature, for two 
different values of the nominal temperature, as compared to their counterparts calculated by finite differences, using 
variations of 2.0% of the nominal temperature values. From these figures, it can be concluded that the first-order 
derivatives compare fairly well with finite differences and enable to evaluate the degree of influence of temperature  
changes within the frequency band of interest.  



 

      
 

Figure 6. Sensitivities of the FRF with respect to temperatures for nominal temperature values 298K and 308K. 
 

As a complementary demonstration of the utility of first-order derivatives, Figure 7 enables to compare the FRF 
amplitudes computed by two different forms: in the first, from a nominal value of the design variable (viscoelastic layer 
thickness, constraining layer thickness and temperature), variations are voluntarily given to such values (1.5% for both 
layer thicknesses and for temperature). Then, the exact FRFs of the “perturbed” system are computed. In the second 
form, the FRFs of the “perturbed” system are estimated from the FRFs of the nominal system by using the first order 
derivatives through first-order Taylor series expansions. As can be seen, the exact FRFs, represented by red lines, are 
fairly accurately approximated by the series expansions, represented by blue lines. The agreement is less satisfactory for 
the temperature variations, leading to conclude that first-order derivatives might not be accurate enough to predict 
variations of the dynamic behavior associated to large variations of the temperature.  
 

      
 

      
 

Figure 7 – Exact and first-order approximations of the FRFs of the system perturbed by variations of the design 
variables 

 
8. Concluding remarks. 
 

In this paper, sensitivity analysis based on finite element models of structural systems containing viscoelastic 
materials has been addressed. A formulation has been developed for the computation of first-order derivatives of 
frequency response functions with respect to two different kinds of parameters, namely: a) physical and/or geometrical 



structural parameters which appear explicitly in the finite element matrices; b) the environmental parameter 
temperature. Applications have been done to rectangular plates fully treated with constraining layers. 

It can be concluded that the use of the complex modulus approach, combined with the concepts of shift factor and 
reduced frequency - justified by the principle of superposition frequency-temperature - has shown to be an adequate 
strategy to account for the typical dependency of the viscoelastic characteristics with respect to frequency and 
temperature in the finite element models of complex structural systems. 

As illustrated in the numerical applications presented, the sensitivities of complex frequency response functions 
convey valuable information about the influence of the design parameters on the dynamic behavior of the system, being 
also a very useful tool for the design, performance analysis and optimization of viscoelastically damped systems. 
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