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Abstract: Contact dynamics problems arises in numerous applications in space and industry, as robotic welding, parts assembly, the 
operation of capturing a satellite in orbit or the general problem of a robotic manipulator grabbing and handling any 
object with its own dynamics. The theory developed here can also be applied to problems in which robots have to 
follow some prescribed patterns or trajectories when in contact with the environment (like in painting activities, for 
instance, or the ROKVISS experiment investigated at DLR). In this paper, the governing equations of motion of a 
system representative of a robotic manipulator in contact with a dynamic environment are derived. These equations 
are obtained through the Lagrangian formalism. The constraints are introduced into the governing equations for the 
case in which the bodies are in contact via the Lagrange multipliers. Some preliminary results (including profiles for 
the contact force) and recommendations are discussed. 
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1. Introduction  

 
There are several ways to deal with the problem of interaction between bodies. Impact dynamics and continuous 

contact between bodies can both be included in the mathematical model of the constrained problem, or just one of these 
effects can be considered. It depends, obviously, on the characteristics of the studied problem. 

The investigations about the contact between bodies include (at least) two different kind of analysis (Pfeiffer and 
Glocker, 1996): one associated with the beginning of contact and one associated with its termination. In the first 
analysis, the distance between the bodies must be checked; in the second analysis, once the contact is established, the 
reaction (normal; compression) force between the bodies must be checked. 

One of the hardest parts in the study of contact problems involves the different models that must be developed for 
contact and non-contact situations and the switching between these models when integrating the governing equations of 
motion (the different situations must be detected). 

According to Figure 1, the system investigated here, the free end of the bar is allowed to move along the constraint 
represented by the mass named mw. In some cases, mw can be thought as a wall representing a constraint to the robotic 
system. All the movements occur in the horizontal plane in order to avoid additional effects induced by gravity. This 
consideration means no loss of generality. When contact occurs, impact and bouncing are also allowed to occur. The 
system is designed in such a way that the bar can turn 360o but, in a part of its trajectory, contact with mw is allowed to 
occur. The mass (ms) in which the bar is pivoted is allowed to oscillate when excited by the movement of the bar (free 
or constrained). In the axis , passing through the connection between the bar and mZ s (perpendicular to the paper 
sheet), there is a prescribed moment  acting to turn the bar. Mθ

 
2. Geometric Model 
 

The problem to be analyzed in this chapter is depicted in Figure 1. The dashed lines represent the position of the  
masses (ms and mw) in which the springs and dampers are free of forces, and the vertical arrows on the right side of 
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these lines indicates the positive direction of the movement of these masses. The dotted line represents the position from 
which one starts to count . Point A represents a rotational joint, and an external moment, , acts on this point.  θ Mθ
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Figure 1 – Oscillating bar constrained by a body with 
properties like mass, stiffness and damping. 

 
In physical terms, this system may represent a robot with a translational joint (mass ms with its stiffness and 

damping ) and a rotational joint (the oscillating bar as being one link of this robot); mw then can be thought as an 
obstructing wall on the robot’s trajectory or some object this robot must handle or interact with. In this same sense, Mθ  
can be thought as an external torque provided by a dc motor (rotational joint). 

 
3. Derivation of the governing equations of motion 
 

The kinetic energy of the system shown in Figure 1 is given by : 
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where  represents the bar moment of inertia around its center of mass, cm,bI θ  represents the bar angular displacement, 
mb represents the mass of the bar, rcm represents the position vector that locates the bar center of mass, rw represents the 
position vector that locates the center of mass of the 
wall and rs represents the position vector that locates the support for the bar. All the vectors are referenced to the inertial 
reference frame, XY.  

The vectors rcm , rw and rs are given by: 

 ( )cm Acmb Acmb sd cos d sin y= θ + θ+r i j  (2) 



 

 ( )w wd y= +r j  (3) 

 s sy=r j  (4) 

where i and j are unit vectors in the X and Y directions, respectively, and d  represents the distance from A to the 
center of mass of the bar.  

Acmb

Using (2) to (4), the velocities that appear in (1) are given by: 

 ( )cm Acmb Acmb sd sin d cos y= − θ θ + θ θ+r i j& && &  (5) 

 w wy=r j& &  (6) 

 s sy=r j& &  (7) 

  Therefore, the kinetic energy given by (1) can be rewritten as:  
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The Rayleigh function that accounts for dissipation of energy associated with the linear damping forces is given by 
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where cw represents the damping coefficient associated with mw, and cs represents the damping coefficient associated 
with ms. 

The potential energy is given by 
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where kw represents the stiffness coefficient associated with mw, and ks represents the stiffness coefficient associated 
with ms. 

The Lagrangian, L, is, therefore, given by : 
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The condition for the beginning of contact is 

 s wd y y sin 0− + − θ =l  (12) 

The condition for the end of contact (in other words, for the transition between constrained and free movement) will be 
given later in this paper.   

The Lagrange’s equations, considering the constraints to the movement (Rosenberg,1977; Clough and 
Penzien,1975), are given by    
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where  represents the vector of the reaction force at the constrained surface, considered here only through its normal 

component, , with  representing the amplitude of the normal force. It is assumed that there are no friction 

forces involved.   represents the vector that locates the free end of the bar. The quantity  represents the equation 
of the constrained surface given by 
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 wd y Y 0Φ = + − =  (16)  

and 
X Y

i j∂Φ ∂Φ
Φ = +

∂ ∂
∇ . The position of the free end of the bar is given by 

 ( )fe scos sin yr i j= θ + θ +l l  (17)  

where  represents the total length of the bar. Using Equation (12), l Φ  and rfe can also be written as  

  (18) sY y sin 0Φ = − − θ =l

 ( )jir wfe ydcos ++θ= l  (19)  

The term fe∂
∂α
r

 (where ) represents a vector that accounts for the variation of the free end position 

related to each one of the generalized coordinates considered. This variation is associated with the work developed by 
the constraint forces and this force ( ), which appears in the right side of Equations (13) to (15), is (sometimes) also 
named as Lagrange multiplier.  

s wy , y andα = θ

NF

Applying Lagrange’s equations ((13) to (15)) and considering the expressions (18) and (19), the governing equations of 
motion are given by   

  (20) ( ) 2
b s s s s s s b Acmb b Acmb Nm m y c y k y m d θ sinθ m d θcosθ F 0+ + + − + +& &&&& & =

 w w w w w w Nm y c y k y F 0+ + − =&& &  (21) 

 ( )2
b,cm b Acmb b Acmb s NI m d m d y cos F cos Mθ+ θ + θ + θ =&& && l  (22) 

Equation (20) represents the governing equation of motion for ys, Equation (21) represents the governing equation of 
motion for yw, and Equation (22) represents the governing equation of motion for θ . Together with these equations, 
Equation (12) represents an additional relationship between the generalized coordinates ys,  and yθ w when contact 
occurs. The set (12) and (20) to (22) provides four equations and four unknowns (ys, θ , yw and ) considering the 

constrained problem and three equations and three unknowns (y
NF

s, θ  and yw) considering the unconstrained problem. In 
the unconstrained case, Equation (12) does not apply (one uses only equations (20) to (22)) and F = 0. The reaction 
force is not always present on the system.  

N

 
4. The non-contact case 
 

According to Figure 1, if the  contact is not allowed to occur and the dynamical system is governed by: d 0>



 

  (23) ( ) 2
b s s s s s s b Acmb b Acmbm m y c y k y m d θ sinθ m d θcosθ 0+ + + − +& &&&& & =

 ( )2
b,cm b Acmb b Acmb sI m d m d y cos Mθ+ θ + θ =&& &&  (24) 

and the dynamics of mass mw by  

0ykycym wwwwww =++ &&&                                                                     (25) 

Equation (25) can be treated independently. The system of second order ordinary differential equations given by (23) 
and (24) is integrated using the fourth order Runge-Kutta algorithm. For this reason, it is convenient to rearrange 
Equations (23) and (24) in order to have only second order derivatives associated with one generalized coordinate in 
each one of them.  

In matrix form, equations (23) and (24) are written as: 
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The inverse of the nonlinear time varying inertia matrix is given by: 
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 where 
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Multiplying both sides of Equation (26) from the left by the inverse matrix (27) and writing the resulting equations 
back in scalar form results:  
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If contact exists at least once and then the bodies separate, the behavior of  must also be monitored using Equation 

(25). The initial condition for  and , supposing  is initially at rest, are given by the beginning of contact 
(impact). 
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5. The contact case  

 
In contact condition, for this problem, there is the loss of one degree of freedom. In other words,  one of the 

variables is dependent of all the others. Considering the set of equations (20) to (22) and using (12) and its derivatives 
accordingly, the objective now is to eliminate one of the variables of this set and create a new set of equations with only 
three unknowns. The best choice is the elimination of the generalized coordinate , which does not always belong to 
the system represented by the oscillating bar (Schäfer et al., 2004). 

wy

 
Solving equation (21) for  FN  and substituting in (23) and (25) results in the two equations: 

 ( ) 2
b s s s s s s b Acmb b Acmb w w w w w wm m y c y k y m d sin m d cos m y c y k y+ + + − θ θ+ θ θ+ + +& &&&& & && & 0=  (30) 

 ( ) ( )2
b,cm b Acmb b Acmb s w w w w w wI m d m d y cos m y c y k y cos Mθ+ θ + θ + + + θ =&& && && & l  (31) 



In the following it is assumed that the free end of the bar and the wall are always in contact. Obviously, this is valid 
only for , i.e., for the fully plastic impact case. Separation will take place when the normal force is zero. For 
general values of the coefficient of restitution between 0 and 1, it is possible to have multiple impacts between the 
masses.  

e 0=

 
Therefore, for steady contact, the first and second time derivatives of equation (12) are given by: 

  (32) s wy y cos 0− + − θ θ=&& & l

  (33) 2
s wy y sin cos− + + θ θ− θ θ =& &&&& && l l 0

 Solving for the time derivatives of wy  results in: 

     w sy y cos= + θ θ&& & l  (34) 

 2
w sy y sin cos= − θ θ+ θ θ& &&&& && l l  (35) 

Substituting (12), (34) and (35) in equations (30) and (31) results into a new set of governing equations of motion for 
the two coordinates  and  given by: sy θ
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Of course, as soon as these two variables are known, the remaining variable, , is also known through Equation 

(12). Equations (36) and (37) represent, respectively, the time behavior of the generalized coordinates  and 

wy

sy θ  during 
the contact condition. The same operations performed before for the unconstrained case will be performed in equations 
(36) and (37) in order to conveniently prepare them for numerical integration. After this operation, one has:  
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(39) 

 
To follow the time behavior of the reaction force, F , Equation (21) can be rewritten using Equations (12), (34), 

(35), (38) and (39) to obtain: 
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It is evident that F  depends on the impacting body velocities (  and N sy& θ& ) but also on the material properties of the 

body posed as constraint ( ).  w w wm k and c,

6. Numerical results: general case 
 

The values of the parameters used in the numerical simulations that follows are presented in Table 1. The time step 
considered in the integration of the governing equations of motion is 0.001 s. The fourth order Runge-Kutta is the 
numerical integrator used. Three different cases are investigated which differ only in the value of the spring constant 
given to the wall. It is assumed that there is permanent compressive contact between the contacting bodies ( e 0= ), but 
no attractive one. Separation then takes place when the normal force goes to zero, i.e. when there will be a change from 
compressive to attractive force (taken zero here).   

 
 

parameter 
 

 
Case 1 

 
Case 2 

 
Case 3 unity 

 

mb 3.00 3.00 3.00 Kg 

ms 1.00 1.00 1.00 Kg 

mw 50.00 50.00 50.00 Kg 

ks 30.00 30.00 30.00 N/m 

kw 30.00 300.00 3000.00 N/m 

cs 0.10 0.10 0.10 Ns/m 

cw 20.00 20.00 20.00 Ns/m 

l  1.00 1.00 1.00 m 

d 0.60 0.60 0.60 m 

Acmbd  0.50 0.50 0.50 m 

Mθ  2.00 2.00 2.00 N m 

cm,bI  0.25 0.25 0.25 Kg m2 

 

Table 1 – Values used in the numerical simulations 
 

The external torque, M , is constant and equal to 2.00 Nm. This torque profile was chosen in order to make the 
system rotate always in the same direction and fulfill all of its possible 360

θ
o turn. Any other kind of excitation (like a 



sinusoidal one with maximum amplitude of 180o, for instance) can be chosen without problem. In the simulation runs, 
the motion of the bar starts in 0θ = . 

The Figures 2 to 7 it is show the behaviour of the system for the  Case 1 (……), Case 2 (- - - -) and  Case 3 (______), 
where only the results associated with the first contact between the bodies are presented. 
Figures 6 and 7 present the evolution of the relative distance between m  and the tip of the bar, and the associated 

velocity. Figure 8 shows the time behavior of the contact force, , between the tip of the bar and  for all the three 

cases. At the beginning of the first contact  is at rest. The amplitude of  jumps at the beginning of contact, from 
zero (no contact) to a value associated with the impact between the bodies and evolves with time according to the 
system states and properties. The value of  at impact does not necessarily represent the biggest value for the contact 
force during contact. A sudden change in velocity, when collision takes place, can be verified in Figure 7 for m

w

F
NF wm
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NF
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       Figure 2 – Angular displacement of the bar                                   Figure 3 – Angular velocity of the bar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 4 – Displacement of ms                                                  Figure 5 – Velocity of mass ms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 6 – Displacement of mw                                                         Figure 7 – Velocity of mw 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

   Figure 8 – The constraint (normal) force,   NF
   

In Cases 1 and 2 the bar overtakes the constraint and continue its rotating motion to the next quadrants. In Case 3, 
the bar does not overtake the first quadrant. In this case, the bar collides with the wall and goes backwards; the torque 
acting at point A pulls it back again and again against mw. 
 
7. Conclusions   
 

The problem presented in this paper and the procedures developed for its analysis can be extended to many other 
situations. For instance, the case in which a robotic manipulator has to grab and handle an object with its own dynamics 
(as occurs in the capturing satellites scenario, for instance). The theory presented here can be applied to problems in 
which robots have to follow some prescribed patterns or trajectories when in contact with the environment (like in 
painting activities, for instance, or the ROKVISS experiment at DLR). 

The necessity for changing from one set of governing equations to another represents a source of integration errors, 
since the integrators are faced with singularities (the system’s states can change brusquely when impact occurs). In this 
work, the difficulty of solving a set of algebraic-differential equations (Equations (12), (20), (21) and (22)) is avoided 
by suitable differentiations and substitutions between the given equations. The set of equations that governs the system 
dynamics when the constraint condition is active is quite different from the one that governs the unconstrained 
movement of the system. One of these sets is always generating the initial states for the other. The number of degrees of 
freedom involved changes from one set of equations to the other.  
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