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Abstract. The purpose of this work is the use of simplified models in the rotordynamic analysis of a hydroelectric rotor-generator
assembly. The analysis of different methodologies will allow for acquaintance with a phonomenological sense of the runing conditions
of the assembly. Thus, the methodology will enable the detection of unstable vibrations and suply a control parameter to be used in
more complex simulations. The Rayleigh-Ritz and Finite Element Methodologies are employed and produced results such as transversal
vibration amplitudes, whirling orbits and Campbell Diagrams in which it is possible to locate critical speeds. The preliminar model to
be simulated is a simplified reproduction of the working conditions at the Coaracy Nunes power plant under Eletronorte administration.
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1. Introduction

During recent years it has been observed an increase in the demand for electrical power due to reduced raining seasons
and the necessity of neighbouring countries of importing Brazilian energy. Thus, a more efficient genertation of power is
to be assessed in order to optimize the operation of old hydro power plants and increase the extraction of energy from the
water. With this aim, this work was proposed as a preliminar study of the running conditions of rotor-generator assemblies
such as the Coaracy Nunes assembly in a rotordynamic standpoint.

Furthermore, traditional dynamic analyses are performed through the introduction of complex CAD drawings into a
comercial and closed Finite Element package. This procedure may sometimes make it difficult to understand the general
physical phenomena involved due to the complexity of the whole structure. To validate a modelling methodology it is
usefull to build a simplified model to be used as a reference where the different aspects of the rotordynamic theory and
the numerical procedures can be assessed and understood.

This article presents a simple study of the Rayleigh-Ritz and Finite Element methodologies and their use in an adapted
model of the assembly under study. Both methodologies allow the calculation of the general behaviour of the assembly.

The Rayleigh-Ritz methodolgy was used with the intent of achieving a description of such behaviour using few degrees
of freedom allowing the understanding of the physical phenomena involved. One of these phenomena is the evolution of
the natural frequency of the system with the increase of rotational speed. The Finite Element formulation makes possible
a more practical description of such phenomena due to the possibilities of its use in large scale problems.

2. The Rayleigh-Ritz methodology

The rotor-generator assembly being modeled in this work is comprised of two discs, one shaft and two bearings.
For the use of the Rayleigh-Ritz methodology the energy equations of each component is needed (Lalanne, 1996). The
unbalance, which cannot be completely avoided, needs to be taken into account as well. Figure 1 depicts the modeled
assembly.

The kinetic energy expressions are used for the discs, shaft and unbalance models. The strain energy is used in the
shaft model. Bearings are represented by the virtual work exerted on the shaft. Hence, the movement equations of a rotor
are attained by the insertion of those energy expressions in Lagrange’s equation:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂U

∂qi
= Fqi (1 ≤ i ≤ N) (1)



whereN is the number of degrees of freedom,qi are the independent generalized coordinates andFqi are the generalized
forces.

Figure 1: Modeled assembly

2.1. The discs

The discs are regarded as rigid strctures and can be represented by their kinetic energy. The kinetic energy of one disc
is attained by its rotation around its center of mass and is calculated through displacement variables relating a coordinate
system fixed on the disc and rotating with it and a fixed reference coordinate system. In the reference coordinate system,
u andw are the coordinates of the centre of mass along theX andZ axes respectively. The anglesθ andψ are the
angles of rotation relating the inclination of the disc with respect to the reference coordinate system. The kinetic energy
is expressed finally, for each disc, by:

Td =
1
2
Md

(
(u̇)2 + (ẇ)2

)
+

1
2
Idx

(
(θ̇)2 + (ψ̇)2

)
+

1
2
Idy

(
Ω2 + 2Ωψ̇θ

)
(2)

where the term1
2IdyΩ2 represents the kinetic energy of the disc rotating at an angular speedΩ. This term is constant and

will not modify the equations of motion in Eq. (1). The termIdyΩψ̇θ represents the gyroscopic effect.

2.2. The shaft

The kinetic energy expression for the shaft is an extension of that obtained for the discs. For an element of lengthL
and constant cross section the kinetic energy expression is:

Ts =
ρS

2

∫ L

0

(
(u̇)2 + (ẇ)2

)
dy +

ρI

2

∫ L

0

(
(ψ̇)2 + (θ̇)2

)
dy + ρILΩ2 + 2ρIΩ

∫ L

0

ψ̇θdy (3)

whereρ is the density,S the cross-sectional area andI the moment of inertia of the shaft. The first integral represents
the classical problem of a beam under bending. The second integral represents the effects of rotational inertia. The term
ρILΩ2 is constant and will not influence the equations of motion.

For obtaining the strain energy, it is necessary to consider a pointB(x, y) in the cross-section of the beam. A coordinate
system fixed to the shaft, anf thus rotating with it, is considered.u∗ andw∗ are the coordinates of the geometric centre
of the cross section with respect to the rotating axesx andz respectively. The strain energy of pointB in the cross
section of the disc is calculated in the rotating coordinate system and second order terms are neglected. The longitudinal
deformation at pointB and the strain energy can be written as:

ε = −x
∂2u∗

∂y2
− z

∂2w∗

∂y2
and Ua =

1
2

∫

τ

εtσdτ (4)

In this expression, the stress-strain relationship and coordinate system transformations such asu∗ = u cosΩt− w sinΩt
andw∗ = u sinΩt−w cosΩt must be used. The diametral moments of inertia in thex andz directions have to be inserted
as well. After some calculations, one can obtain the following expression for the strain energy in the reference coordinate
system:

Us =
E

2

∫ L

0

[
Iz

(
cosΩt

∂2u

∂y2
− sinΩt

∂2w

∂y2

)2

+ Ix

(
sin Ωt

∂2u

∂y2
− cosΩt

∂2w

∂y2

)2
]

(5)

Finally, for a symetric shaft (I = Ix = Iz) the strain energy is writen as:

Us =
EI

2

∫ L

0

[(
∂2u

∂y2
+

∂2w

∂y2

)2
]

(6)



2.3. Bearings

The bearing properties are suposed known. Thus, the virtual workδW of the external forces acting on the shaft are
found for each bearing in the following manner:

δW = −kxxuδu− kxzwδu− kzzwδw − kzxuδw − cxxu̇δu− cxzẇδu− czzẇδw − czxu̇δw (7)

or in the compact form:δW = Fuδu + Fwδw. Fu andFw are the generalized force components and are expressed in the
matricial form as:

[
Fu

Fw

]
= −

[
kxx kxz

kzx kzz

] [
u
w

]
−

[
cxx cxz

czx czz

] [
u̇
ẇ

]
(8)

2.4. The unbalance

The unbalance is due to a massmu located at a distanced from the geometric centre of the shaft and its kinetic energy
is to be calculated. The mass is located on a perpendicular plane with respect to they shaft and its coordinate with respect
to y is constant. The angular diplacement isΩt. In the reference coordinate system, the mass velocities and positions are:

−−→
OD =

∣∣∣∣∣∣

u + d sinΩt
Cte.

w + d cosΩt

∣∣∣∣∣∣
, V =

d
−−→
OD

dt
=

∣∣∣∣∣∣

u̇ + dΩcos Ωt
0

ẇ − dΩ sinΩt

∣∣∣∣∣∣
(9)

and the kinetic energy is:

Tu =
mu

2
[
(u̇)2 + (ẇ)2 + Ω2d2 + 2Ωu̇d cosΩt− 2Ωẇd sinΩt

]
(10)

The termmuΩ2d2/2 is constant and will not modify the equations of motion. The massmu is a different measure for
each disc and, hence, the kinetic can be simplified as in:

Tb ≈ mbΩd(u̇ cos Ωt− ẇ sinΩt) (11)

2.5. Equations of motion

The Rayleigh-Ritz method is characterized by the replacement of displacementsu andw by two functions: one time
dependent generalized coordinateqi(t) and one displacement functionf(y) depending on coordinatey along the shaft
representing the shape of the first vibration mode of a bi-supported beam. Hence,u, w and their time derivatives can be
expressed as:

u = f(y)q1 , w = f(y)q2

u̇ = f(y)q̇1 , ẇ = f(y)q̇2

f(y) = sin
πy

L
,

df(y)
dy

= g(y) =
π

L
cos

πy

L

Anglesθ andψ are supposed small and can be approximated by:

θ =
∂w

∂y
=

df(y)
dy

q2 = g(y)q2 (12)

ψ = −∂u

∂y
= −df(y)

dy
q1 = −g(y)q1 (13)

The displacements and angles can be replaced in the energy expressions for the calculation of the global energy
expressions. The global kinetic energy can be writen as:

T = Td1 + Td2 + Ts + Tu1 + Tu2 (14)

whereTdi are the expressions for the kinetic energy of the discs.Ts is the kinetic energy of the shaft andTui are the
kinetic energies for the unbalance on each disc. Thus:

T = A
(
q̇2
1 + q̇2

2

)
+ B (q̇1q2) + C (q̇1 cosΩt− q̇2 sinΩt) (15)

whereA, B andC are respectively:

A =
1
2

[
Md1f(y1)2 + Md2f(y4)2 + Ixd1g(y1)2 + Ixd2g(y4)2 + ρSL +

πρIa

4L

]
(16)

B = Ω
[
Iyd1g(y1)2 + Iyd2g(y4)2 + ρIaLπ

]
(17)

C = Ω [mb1d1f(y1) + mb2d2f(y4)] (18)



The global strain energy is expressed by the strain energy of the shaft as in Eq. (6):

U =
πEIa

4

(π

L

)3 (
q2
1 + q2

2

)
(19)

The virtual work is calculated as the sum of the virtual works exerted by the two bearings on the shaft. It is also
considered the simetry of cross coupling terms (kxz = kzx andcxz = czx). The generalized forces obtained are:

[
Fu

Fw

]
=−

[
kxx1f(y1)2 + kxx2f(y2)2 kxz1f(y1)2 + kxz2f(y2)2

kzx1f(y1)2 + kzx2f(y2)2 kzz1f(y1)2 + kzz2f(y2)2

] [
q1

q2

]

−
[

cxx1f(y1)2 + cxx2f(y2)2 cxz1f(y1)2 + cxz2f(y2)2

czx1f(y1)2 + czx2f(y2)2 czz1f(y1)2 + czz2f(y2)2

] [
q̇1

q̇2

] (20)

indexes1 and2 represent bearings1 and2. More bearings can be added to the system by the same manner.
The system equations of motion are obtained by plugging the energy expressions into Lagrange’s equation and solving

for the time derivatives of the generalized displacements:

2Aq̈1 + B
Ω Ωq̇2 + π4EIa

2L3 q1 = CΩsin Ωt (21)

2Aq̈2 − B
Ω Ωq̇1 + π4EIa

2L3 q2 = CΩcos Ωt (22)

If one is to analyze the non-forced behaviour of the system, then the homogeneous equations are:

Meq q̈1 + CeqΩq̇2 + Keqq1 = 0 (23)

Meq q̈2 − CeqΩq̇1 + Keqq2 = 0 (24)

with Meq = 2A, Ceq = B/Ω andKeq = π4EIa/(2L3). Initial conditions are used in the integration of the equations of
motion allowing one to attain the precession orbits of the shaft. Depending on the inital conditions, it is possible to obtain
forward or backward whirling orbits.

Natural frequencies are obtained assuming a solution such asq1 = Q1e
rt andq2 = Q2e

rt and using it in Eqs. (23)
and (24) leading to the following homogeneous system of equations:

[
Meqr

2 + Keq CeqΩr
−CeqΩr Meqr

2 + Keq

]{
Q1

Q2

}
=

{
0
0

}
(25)

The non-trivial solution for the system will lead to the following characteristic equation:

Meqr
4 + (2MeqKeq + C2

eqΩ
2)r2 + K2

eq = 0 (26)

WhenΩ = 0 (static rotor) the solution to Eq. (26) is:

r2
1stat = r2

2stat = j2ω2
1stat = j2ω2

2stat = −Keq

Meq
(27)

with j2 = −1. The frequencies are:ω1stat = ω2stat =
√

Keq/Meq. When the system is under rotation, rootsr1 andr2

and the corresponding frequencies are:

r2
1 = j2ω2

1 , ω1 =

√√√√ω2
1stat +
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eqΩ2

2M2
eq

(
1−

√
1 +

4M2
eqω

2
1stat

C2
eq

Ω2

)
(28)

r2
2 = j2ω2

2 , ω2 =

√√√√ω2
1stat +

C2
eqΩ2

2M2
eq

(
1 +

√
1 +

4M2
eqω

2
1stat

C2
eq

Ω2

)
(29)

Equations (28) and (29) show the evolution of the natural frequencies of modes 1 and 2 as the rotation speed increases.
With those equations it is possible to build the Campbell diagram that will indicate critical rotational speeds of the system
(speeds that coincide with natural frequencies causing resonance).

3. The Finite Element method

The Finite Element methodology used here employs a Timoshenko beam element with four degrees of freedom at
each node. The basis for the system matrices are the matrices obtained for the saft. Elements such as discs and bearings
are added to the shaft matrices in order to build the system matrices. In this problem, some important assumptions have to
be made: there are no displacements in they direction; angles and displacements are considered to be small; gyroscopic
effects will happen only around they direction; angles around thex andz directions are much smaller thanΩ; plane
cross-sections remain plane after defformation; element displacements are represented by Hermitian shape functions.

Discs and bearings are concentrated at nodal positions. This means that their behavior will be added to the system
matrices in specific nodal positions and this will be done after the shaft matrices are built.



3.1. Discs

Each node possesses four degrees of freedom: two displcementsu andw and two anglesθ andψ. Theδ vector of
nodal displacements of the centre of the disc isδ = [u, w, θ, ψ]t. The use of Eq. (2) into Lagrange’s equation leads to:

d

dt

(
∂T

∂δ

)
− ∂T

∂δ
=




Md 0 0 0
0 Md 0 0
0 0 Idx 0
0 0 0 Idx








ü
ẅ

θ̈

ψ̈





+ Ω




0 0 0 0
0 0 0 0
0 0 0 −Idy

0 0 Idy 0








u̇
ẇ

θ̇

ψ̇





(30)

where the first matrix is the mass matrix and the second matrix a gyroscopic matrix.

3.2. Shaft

The shaft is modelled as a beam with circular cross-section. Each element has two nodes and eigth degrees of freedom.
Thus, the elementary matrices have eight degrees of freedom on its span. The relations between angles and displacements
are:

θ =
∂w

∂y
, ψ = −∂u

∂y
(31)

The nodal displacement vector isδ = [u1, w1, θ1, ψ1, u2, w2, θ2, ψ2]
t, which can be split into two vectors:

δu = [u1, w1, θ1, ψ1]
t and δw = [u2, w2, θ2, ψ2]

t (32)

Displacementsu andw can be expressed as functions of the hermitian shape functions (Ni(y)) and nodal displacements
δu andδw as inu = N1(y)δu andw = N2(y)δw. Ni(y) are the calssical shape functions for a beam in bending:

N1(y) =
[
1− 3y2

L2
+

2y3

L3
;−y +

2y2

L
− y3

L2
;
3y2

L2
− 2y3

L3
;
y2

L
− y3

L2

]
(33)

N2(y) =
[
1− 3y2

L2
+

2y3

L3
; y − 2y2

L
+

y3

L2
;
3y2

L2
− 2y3

L3
;−y2

L
+

y3

L2

]
(34)

The kinetic energy is attained from Eq. (3) which gives:

Ts =
ρS

2

∫ L

0

[
δu̇tN t

1N1δu̇ + δẇtN t
2N2δẇ

]
dy +

ρI

2

∫ L

0

[
δu̇t dN t

1

dy

dN1

dy
δu̇ + δẇt dN t

2

dy

dN2

dY
δẇ

]
dy

− 2ρIΩ
∫ L

0

[
δu̇t dN t

1

dy

dN2

dy
δw

]
dy + ρILΩ2

(35)

Replacing the shape functions (33) and (34) and their derivatives into Eq. (35) it is possible to reach the compact form:

Ts =
1
2
δu̇tM1δu̇ +

1
2
δẇtM2δẇ +

1
2
δu̇tM3δu̇ + +

1
2
δẇtM4δẇ + Ωδu̇tM5δw + ρILΩ2 (36)

where matricesM1 andM2 are the classical mass matrices,M3 andM4 represent the rotational inertia effects andM5

represents the gyroscopic effets. The last term, which is constant, will not present any contribution when Lagrange’s
equation is applied to (36) as follows:

d

dt

(
∂Ts

∂δ̇

)
− ∂Ts

∂δ
= (M + Ms) δ̈ + Cδ̇ (37)

whereM andMs are deduced directly fromM1, M2, M3 andM4 andC from Ms. The matrices are:

C =
ρIΩ
15L




0 −36 −3L 0 0 36 −3L 0
36 0 0 −3L −36 0 0 −3L
3L 0 0 −4L2 −3L 0 0 L2

0 3L 4L2 0 0 −3L −L2 0
0 36 3L 0 0 −36 3L 0
−36 0 0 3L 36 0 0 3L
3L 0 0 L2 −3L 0 0 −4L2

0 3L −L2 0 0 −3L 4L2 0




gyroscopic matrix (38)



Ms =
ρI

30L




36 0 0 −3L −36 0 0 −3L
0 36 3L 0 0 −36 3L 0
0 3L 4L2 0 0 −3L −L2 0

−3L 0 0 4L2 3L 0 0 −L2

−36 0 0 3L 36 0 0 3L
0 −36 −3L 0 0 36 −3L 0
0 3L −L2 0 0 −3L 4L2 0

−3L 0 0 −L2 3L 0 0 4L2




rotational inertia matrix (39)

M =
ρSL

420




156 0 0 −22L 54 0 0 13L
0 156 22L 0 0 54 −13L 0
0 22L 4L2 0 0 13L −3L2 0

−22L 0 0 4L2 −13L 0 0 −3L2

54 0 0 −13L 156 0 0 22L
0 54 13L 0 0 156 −22L 0
0 −13L −3L2 0 0 −22L 4L2 0

13L 0 0 −3L2 22L 0 0 4L2




translational inertia matrix (40)

The strain energy of the shaft is obtained by means of Eq. (6) leading to:

Us =
EI

2

∫ L

0

[
δut d

2N t
1

dy2

d2N1

dy2
δu + δwt d

2N t
2

dy2

d2N2

dy2
δw

]
dy (41)

After integration, the compact form is:

Us =
1
2
δutK1δu +

1
2
δwtK2δw (42)

whereK1 andK2 are the classical stiffness matrices.
It is frequently necessary to take into account the effect of shear, which will modify the classical stiffness matrix. The

stiffness matrix with shear effects being taken into account is writen as:

K =
EI

(1 + a)L3




12 0 0 −6L −12 0 0 −6L
0 12 6L 0 0 −12 6L 0
0 6L (4 + a)L2 0 0 −6L (2− a)L2 0

−6L 0 0 (4 + a)L2 6L 0 0 (2− a)L2

−12 0 0 6L 12 0 0 6L
0 −12 −6L 0 0 12 −6L 0
0 6L (2− a)L2 0 0 −6L (4 + a)L2 0

−6L 0 0 (2− a)L2 6L 0 0 (4 + a)L2




(43)

In Eq. (43)a represents the effect of shear and is given bya = (12EI)/(GSrL
2). G is the shear modulus,ν Poisson´s

coefficient andS ≈ Sr the cross sectional area. If the shear effect is not to be taken into account,a must be set to zero.

3.3. Bearings

The bearings’ stiffness and damping features are due to the displacements and velocities. The influence of angles and
moments is usually not taken into account (Lalanne, 1996). Using Eq. (8) it is possible to achieve:





Fu

Fw

Fθ

Fψ





= −




kxx kxz 0 0
kzx kzz 0 0
0 0 0 0
0 0 0 0








u
w
θ
ψ




−




cxx cxz 0 0
czx czz 0 0
0 0 0 0
0 0 0 0








u̇
ẇ

θ̇

ψ̇





(44)

The first matrix is a stiffness matrix and second matrix a viscous damping matrix. These matrices are not usually symetric
and the terms can vary as a function of the rotating speed.

3.4. Unbalance

The general kinetic energy expression due to unbalance is given by expression (11). The application of Lagrange’s
equation withδ = [u,w]t gives:

d

dt

(
∂T

∂δ̇

)
− ∂T

∂δ
= −mudΩ2

[
sinΩt
cos Ωt

]
(45)



3.5. Assembly of equations of motion

In building the global matrices, the elemental mass, damping, stiffness and force entries are then added to the corre-
sponding rows and columns of the global mass, damping, stiffness and force matrices as in the following equation:

[M ]δ̈ + [C(Ω)]δ̇ + [K]δ = mud sinΩt + mud cosΩt (46)

The elemental matrices can be added together to form the global matrices shown in Fig. 2.

Figure 2: Assembly of system matrices

3.6. Natural Frequencies and time Integration

For the calculation of natural frequencies the pseudo-modal method was used. In this method, the system matrices are
reduced allowing the calculation of the first lower frequency natural frequencies without loss of accuracy. A modal space
is defined from the solutions of:

[M ]δ̈ + [K∗]δ = 0 (47)

whereK∗ is the actual stiffness matrix with supressedkxz andkzx terms in order to maintain simetry. The firstn << N
modesφ1 . . . φn are used to build a reduction matrix:

φ = (φ1 . . . φn) (48)

used for the change of base(δ = φp). p is the vector of modal variables. The change of base is performed by pre-
multiplying Eq. (46) byφt, leading to:

φtMφp̈ + φtC(Ω)φṗ + φtKφp = φtF (t) (49)

The transformed matrices(m = φtMφ, c = φtC(Ω)φ, k = φtKφ, f = φtF (t)) are then used to build a reduced
equation of motion:

mp̈ + cṗ + kp = f (50)

The natural frequencies are obtained by assuming a solution such asp = Pert. Replacing this solution into Eq. (50)
produces:

[r2m + rc + k]p = 0 (51)

This equation can be expressed as:
[

0 I
−k−1m −k−1c

] {
rP
P

}
=

1
r

{
rP
P

}
(52)

The solution of the eigenproblem will produce complex conjugate frequencies that are modified as the value ofΩ changes.
The frequencies are in the form:

ri = − αiωi√
1− α2

i

± jωi (53)

whereαi is also known as the damping factor. The orbits are obtained by the Newmark integration method.



4. Results

In this section the results for both methodologies are shown. Simulations with the twin-rotor simplified model of
Coaracy Nunes power plant, shown in Fig. 1, were carried out with and without mass unbalance conditions on both
rotors. In the mass unbalance case, the larger rotor was considered with a mass unbalance of100 kg located at2.5 m from
its centre. The smaller rotor was considered with a mass unbalance of50 kg located at1.8 m from its centre.

4.1. Rayleigh-Ritz methodology

With the Rayleigh-Ritz methodology, it was possible to build the Campbell diagram and the whirling orbits for forward
whirl and backward whirl depicted in the following figures by the red lines. The blue line represents points on which the
rotating frequency is equal to the natural frequency. The green line depicts the responce to unbalance conditions.

The unbalance response was obtained using the equations of motion and plotted in the same figure of the Campbell
Diagram. One can note that the peak amplitude is located at the same rotational speed of the first critical speed which is
1280 rpm. The rotational speed of the assembly is150 rpm which assures safety against resonance. If anisotropic bearings
were to be considered, the two curves (in red) would separate at the point where the shaft is stopped (Ω = 0 rpm) and the
green curve would show two peaks with the second peak coinciding with the second critical speed.

Figure 3: Campbell Diagram for Coaracy Nunes assembly showing unbalance response

The whirling orbit for forward whirl in the balanced and unbalanced cases are shown in Fig. 4. It is possible to note
that, in the unbalanced case, the orbits are somewhat more coarse than in the balanced rotor case.
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Figure 4: Forward whirl orbit for balanced and unbalanced rotor



The orbits for the Rayleigh-Ritz simulation were obtained by means of a fourth order Runge-Kutta integration proce-
dure. The forward and backward configurations can be achieved by changing the initial conditions for each generalized
displacement and speed.

4.2. The Finite Element methodology

For the Finite Element method, the evolution of natural frequencies with the increase of rotational speed was obtained
by means of an eigenvalue procedure of a system including a damping matrix. As a result, all the frequencies obtained
are of complex form. The mode frequencies used in the campbell diagram are complex conjugate frequencies as shown
in Eq. (53). Due to this behaviour, the forward and backward natural frequency curves present a more symetric shape as
shown in Fig. 5.

The whirling orbits were obtained using the Newmark integration procedure. This procedure is a single step integration
formula (Géradin, 1997) where the system state vector at a subsequent time is deduced from the state vector at the actual
time through a taylor series expansion of displacement and velocities. In the Newmark scheme, the errors of the taylor
series expansion are represented by means of integrals being aproximated by the gaussian quadracture. The whirling orbit
for the balanced case is shown in Fig. 6.
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Figure 5: Campbell Diagram for Coaracy Nunes assembly - Finite Element
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Figure 6: Forward whirl orbit for balanced rotors

The whirling orbit obtained shows a pathline that is not as circular as the one obtained for the Rayleigh-Ritz method-
ology. This feature is a result of the initial conditions necessary for each degree of freedom. In this case, the displacement



initial condition was the first natural mode shape with frequency of1089 rad/s (5.25 Hz). The velocity initial condition
was the first mode shape multiplied by its frequency. The trend towards a circular pathline for the shaft observed in Fig. 6
shows a right direction for the choice of such initial conditions. This direction would not be regarded if the Rayleigh-Ritz
results were not at hand.

5. Conclusions

This work presented the use of classical methodologies in the rotordynamic analysis of a hydro turbine rotor-generator
assembly. To this end, the Rayleigh-Ritz methodology was applied in order to obtain a general direction for the Finite
Element procedure. Due to the use of few degrees of freedom the Rayleigh-Ritz results allowed a better understanding of
the general behaviour of the rotor-generator assembly through the assessment of the evolution of its natural frequencies
with the increase of rotational speed. The response due to unbalanced conditions was applied to confirm the critical speed
obtained with the Campbell diagram. The whirling orbit obtained showed a circular orbit which indicates that the shaft is
rotating in its own natural frequency speed.

The Finite Element assessment carried out in this work showed an approximation to the results of the Rayleigh-Ritz
procedure because the former results were already known and allowed a certain calibration of the Finite-Element routines.

The routines built for the Finite Element analysis present a general scope of applications and can be used in the analysis
of many rotordynamics problems taking into account, naturally, their level of simplicity. The use of Timoshenko beam
elements is particularly interesting due to the inclusion of shear effects into the stiffness matrix.

The use of classical and traditional methodologies in the analysis of a simplified model of complex structures is
extremely important because it will suply valuable information necessary in the analysis of the same problem using
comercial packages and more complex geometries. This comprehensive approach will allow the assessment of mode
shapes and natural frequencies that are already known at some extent. Hence, errors due to lack of information about the
natural physical behaviour of such structure will be greatly diminished.
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