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Abstract: Non-smooth systems are usually related to physical systems with dry friction, impact and backlash. These
systems operate in different modes, and the transition from one mode to another can often be idealized as an instantaneous
or discrete transition. Since the time scale of the transition from one mode to another is much smaller than the scale of
the individual mode dynamics, the mathematical modeling of these systems can be lead as discontinuous. This contribution
uses a switch model in order to analyze the dynamical behavior of a single-degree of freedom oscillator with a discontinuous
support. The procedure seems to be effective in order to deal with non-smooth system. Numerical simulations show a rich
response, presenting dynamical jumps and chaos.
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1. Introduction

Physical systems with dry friction, impact and backlash operate in different modes, and the transition from
one mode to another can often be idealized as an instantaneous or discrete transition. Since the time scale of
the transition from one mode to another is much smaller than the scale of the individual modes dynamics, the
mathematical modeling of this kind of system can be done by discontinuous systems.

An alternative to deal with the mathematical modeling of discontinuous systems is the definition of a
smoothened vector field [Hinrichs et al., 1998; Van de Vrande et al., 1999]. The smooth approximation has
many advantages and normally yields good results. The main disadvantage of the smoothing method is the fact
that it yields stiff differential equations which implies difficulties for numerical simulations.

The objective of this research effort is the analysis of non-smooth systems employing a switch model.
Specifically speaking, a single-degree of freedom system with a discontinuous support is concerned. The pro-
cedure here presented is originally proposed by Leine and Van Campen [Leine and Van Campen, 1998] on the
study of stick-slip vibrations. Basically, the switch model treats non-smooth systems defining different sets of
ordinary differential equations. Each set is related to a subspace of the physical system. The innovative idea is
the definition of transition regions, used in order to govern the dynamical response during the transition to one
set of equation to another. Therefore, each subspace has its own smooth ordinary differential equation.

The use of this approach allows the use of classical numerical procedures for each subspace. Numerical
investigations of the single-degree of freedom system with a discontinuous support shows efficiency and allows
one to analyze many aspects related to the system dynamics. Results show rich response, presenting dynamical
jumps and chaos.

2. Discontinuous Support Model

This contribution analyzes the dynamical response of a single-degree of freedom system with a discontinuous
support, shown in Figure 1la. The support is massless, having a linear spring stiffness k; and linear damping
coefficient c¢;. The displacement of the mass is denoted by z, relative to the equilibrium position, while the
displacement of the support is denoted by y. The system has two possible modes, represented by a situation



where the mass presents contact with the support and other situation when there is no contact. Calling f; as
the contact force between mass and support, there is no contact between the mass and the support when:
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Figure 1: Mass-spring-damper with a discontinuous support.

z <y and fs=0. (1)
On the other hand, there is contact when:
x =y and fs=ksy+ csy > 0. (2)

The support relaxes to the equilibrium state, y = g, when there is no contact between the mass and
the support. Assuming that the relaxation time of the support is much smaller than the time between two
contact events, the dynamics of the support can be neglected. This assumption reduces the system dynamics
to the dynamics of a mass-spring-dashpot, associated with a second-order differential equation. Therefore, the
governing equations of the system may be defined by two different equation. One, for situations without contact:

mi + kx + ci = fo cos(wt). (3)
And the other when there is contact:
mi + kx + ks(xr—g) + (¢ + ¢cs) & = fo cos(wt). (4)

According to the Filippov theory, the state space of a system @ = f(u),u € R™ may be split into two
subspaces I'_ and T'; separated by a hyper-surface 3. The hyper-surface ¥ is defined by a scalar indicator
function h(u). Therefore, the state v is in ¥ when:

h(u) = 0. (5)

Hence, it is possible to define the subspaces I'_ and I';, and also the hyper-surface X, using the following
sets:

I_={u e R"| h(u) < 0}
Y ={u e R" | h(u) =0} (6)
I'+ ={u € R"| h(u) > 0}

Some physical systems need different interfaces in order to perform a correct description of the transitions.
The single-degree of freedom system of Figure 1 is an example. In this system, one denotes u = (x, %) and
the contact between the mass and the support occurs if the displacement becomes equal to contact distances
¢g.0n the other hand, the mass loses contact with the support when the contact force vanishes, i.e. if fs =
ks (x — g) + ¢s & = 0. Therefore, it is necessary two indicator functions in order to define the system subspaces:

holz,2) =z —g;
hg(z, &) = ks (x — g) + ¢s & (7)



The mass is not in contact with the support if the state-vector v = (z,4) € T'_, i.e
_={u € R?| ha(z,i) < 0or hg(z,&) < 0. (8)
On the other hand, there is contact between the mass and the support if u = (z,4) € T';:
Iy ={u € R?| ho(z,#) > 0and hg(x,7) > 0}. (9)

The hyper-surface ¥ consists of the conjunction of two surfaces ¥, and ¥ 3. The hyper-surface X, defines
the transition from I'_ to I'; because the contact is made when u becomes large than g,

Yo = {u € R?*| holx,2) = 0, hg(z, &) > 0}. (10)

The hyper-surface ¥z defines the transition from I'; to I'_ as the contact is lost when the force of the
support vanishes.

Y5 ={u € R?*| ho(x,2) > 0, hg(z, &) = 0}. (11)

All subspaces related to the cited system, which involves the subspace I'_ and I';, and also the hyper-surfaces
Yo and g, are shown in Figure 2.

Figure 2: Phase space of the discontinuous support system.

The state equation of this discontinuous system can be written as follows

f-(u,t) u € T_
= f(u,t) = co{f (u,t), f+(u,t)}, u € X (12)
with,
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in the hyper-surface X 3. (16)

This approach allows one to deal with non-smooth systems employing a smoothened system. Leine [Leine ,
2000] also defines a finite region in order to consider transition subspaces. Therefore, a region of small relative
displacement is define as |z — g| < 7, where < 1. The finite region is useful for numerical simulations since an
exact value of zeros will rarely be computed. The thickness parameter of the narrow band 7, needs to be chosen
according to the physical problem.

3. Numerical Simulation

Numerical procedure developed to deal with nonlinearities of the formulation analyzes, at each step of time,
the subspace related to the system state. It allows one to define the system mode and, as a consequence, the
governing equation. The change from the contact mode to the mode without contact operates as switches
between different systems. The thickness of the narrow band 7 and the Runge-Kutta Fehlberg tolerance TOL
need to be appropriated chosen [Leine, 2000].

The switch model is introduced as an efficient numerical method for interacting a system with discontinuous
support. The concept of the switch model with a finite narrow band, during the transition, allows the decrease
of the time steps being essential for the efficiency of this method. This article considers numerical simulations
related to the parameters presented in Table 1.

Table 1: Parameter Values

m = 1kg k=1N/m ¢=0.05N/(ms) | fo =05m
¢s = 0.3N/(ms) | ks = 10 N/m g=4.0

At first, the analysis of numerical parameters is performed. Figure 3 presents an example for n = 10~*
and TOL = 10~8. Under this condition, the system presents an evolution where part of the movement occurs
without contact and the other part occurs with contact (Figure 3a). Therefore, the system passes for all
subspaces previously defined. Figure 3b shows the time evolution of the system response showing its position
in the subspaces. It is worthwhile to observe that the system passes in all regions, i.e., the subspaces I'_ and
I'y, and the hyper-surfaces ¥, and 3.
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Figure 3: a)Phase space, w = 1.0 rad/s; b) Subspaces and hyper-surfaces versus time.

Now, different stiffness support values, ks, are considered. As expected, the decrease on the stiffness of the
springs causes more penetration of the mass through the support. It should be pointed out that the proposed
procedure presents good results for different values of spring stiffness, allowing the analysis of impact systems,
which can be done introducing high values of stiffness k;. Figure 4 presents some phase spaces related to
different values of ks, confirming this conclusion.
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Figure 4: Phase spaces related to different values of k: ks = 10; 50 and 10° N/m, respectively.

Frequency domain analysis is now in focus considering the resonance curve of the system with discontinuous
support (Figure 5). These results is obtained considering two different values of the support stiffness: ks = 10
N/m (Figure 5a and ks = 50 N/m (Figure 5b. The resonance curve has a typical characteristic of nonlinear
systems, presenting dynamical jumps. Besides, it presents a discontinuity related to the contact with the
support. This is caused by the hardening related to the contact with the support. Notice that the hardening is
high when k; is increased, Figure 5b. Moreover, the amplitude becomes equal to g when w = w, and w = wy,
on both sides of the peak.
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Figure 5: Frequency response of the discontinuous support system: a) ks = 10 N/m; b) ks, = 50 N/m.

In order to analyze dynamical jumps, different situations are now considered. When w, < w < we, a
bifurcation is observed and three periodic solution or attractors may co-exist: two stable and one unstable
(dashed line). Leine et al. shows that this bifurcation is caused by the jump of the Floquet multiplier through
the unit circle, being denoted as discontinuous fold bifurcation [Leine and Van Campen, 2002].

The analysis of basins of attraction can be useful to observe the co-existence of attractors, for w, < w < w,.
Figure 6 shows the evolution of the basin of attraction under increasing frequency w. In each case, it is observed
two stable co-existing periodic attractors, represented by two different colors (dark and light).

Each one of these behaviors can be observed in the phase space presented in Figure 7. In Figure 6a, the
excitation frequency is w = 1.1 rad/s, while in Figure 6b w = 1.18 rad/s. The light color basin of attraction
represents a behavior without contact, while the dark basin of attraction is associated with a behavior with
contact. Initially, when w = wj, all initial conditions lead to dark attractor. After that, it is interesting to notice
that the light attractor increases, when excitation frequency is increased. The “dynamical jump”, when w = w,,
is represented when all initial conditions lead to light basin of attraction.

4. Grazing Boundaries and Bifurcations

The dynamical response of the system for small amplitudes has no contact, and therefore a linear response
is expected, represented by an ellipse in the phase space. Increasing the displacement amplitude, for example
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Figure 6: Basin of attraction: a)w = 1.1 rad/s; b) w = 1.18 rad/s.
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Figure 7: Phase space of each periodic attractor.

due to changes in the forcing characteristics, the elliptical trajectory tends to grow and, eventually, reaches the
support. The situation where the phase space ellipse exactly fits within the contact or impact boundaries, is
called grazing orbit. Therefore, the mass graze the support with zero velocity. Afterwards, a further incremental
change to the excitation characteristics (typically amplitude or frequency) produces contact behavior, that is
not easily predicted. For some combination of system parameters, the response may proceed very abruptly into
chaos. Higher-order periodic response may interrupt the chaotic regime as the forcing characteristic continue
to change. On the other hand, the grazing orbit may be replaced directly by a stable periodic response. This
unpredictability in connection with the grazing phenomenon has sparked interest in defining and exploring the
so-called grazing bifurcation [Nordmark, 1991, Casas et al., 1996, Nusse et al., 1994, Virgin and Begley, 1999].

The single-degree of freedom reported in this article allows one to present a demonstration of grazing
phenomenon and also different kinds of motion related to this. On this basis, it is necessary to increase k;
and also change the gap, g. Figure 8 shows bifurcation diagram where the control parameter is the excitation
frequency, w. Notice that this diagram gives an indication that the motion quickly moves into a chaotic region
after an graze contact. These diagrams are obtained considering the parameters presented in Table 2.

Table 2: Parameter Values

m = 1kg k=1N/m c=0.05N/(ms) | fo=0.5m
¢s =0.6N/(ms) | ks =300N/m | g=1.6 0.8 <w < 1.0rad/s

By considering a frequency lower than w = 0.83, the system presents a linear response, non-impacting. By
increasing this frequency value, the system reaches the support, presenting contact, and the response becomes
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Figure 8: Bifurcation diagram with w as control parameter, displacement x w.

irregular over a range of excitation frequency. The phase space related to w = 0.93, is shown in Figure 9a,
where it can be observed a period-3 orbit with a grazing contact. By promoting a small increase in the forcing
frequency, w = 0.94, the response becomes chaotic, as shown in the Poincaré map of the Figure 9b.
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Figure 9: a) Phase space with graze contact; b) Poincaré map.

Now, a different bifurcation diagram is focused on, considering the forcing amplitude f; as a control param-
eter. The other parameters used are:m = 1kg; £ =1 N/m; ¢ = 0.05 N/(ms); ¢; = 0.6 N/(ms); w = 0.9 rad/s;
fo=0.5m; ks = 1000 N/m and g = 2.0. This bifurcation diagram are shown in Figure 10.
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Figure 10: Bifurcation diagram, displacement x fj.



Notice that, after a region related to periodic behaviors, chaotic regions appears. Once again, a graze orbit
occurs just before the birth of the chaotic attractor. Phase spaces and Poincaré map of period-4, chaotic and
period-2 is presented in Figure 11a, b, c, respectively.
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Figure 11: Phase space and Poincaré map, c) fo = 0.45;d) fo = 0.7 and e) fo = 0.8 m.

5. Conclusions

The objective of this research effort is the analysis of non-smooth systems employing a switch model. As
an application of the general formulation, a single-degree of freedom system with a discontinuous support is
considered. The switch model treats the system as four different sets of ordinary differential equations and,
therefore, the state space is split into subspaces. Moreover, a finite region of transition is defined being useful for
numerical simulations. In this case, the thickness parameter of the narrow band needs to be chosen according
to the physical problem. Numerical investigations of the single-degree of freedom system shows efficiency and
allows one to analyze many aspects related to the dynamics of this system. The dynamical response is very rich,
presenting dynamical jumps and chaos. It is shown the importance of the analysis of Graze contact related to
this kind of system. Finally, the authors agree that the proposed procedure may be useful for the analysis of
other non-smooth systems.

6. Acknowledgements
The authors would like to acknowledge the support of the Brazilian Research Council (CNPq).
7. References

Casas, F., Chin, W., Grebogi, C. and Ott, E.; “Universal Grazing Bifurcation in Impact Oscillators”’; Phys.
Rev. E, 53, pp. 134-139, 1996.

Hinrichs, N., Oestreich, M. and Popp, K.; “On the Modelling of Friction Oscilatores”; Journal of Sound an
Vibration, 216(3), pp. 435-459, 1998.

Leine, R.I. and Van Campen, D.H.; “Stick-slip Vibrations Induced by Alternate Friction Models”; Nonlinear
Dynamics, 16(1), pp. 41-51, 1998.

Leine, R.I. and Van Campen, D.H.; “Discontinuous Fold Bifurcation in Mechanical Systems”; Archive of
Applied Mechanics, 72, pp. 138-146, 2002.

Leine, R.I.; “Bifurcations in Discontinuous Mecanical Systems of Filippov-Type”; Ph.D. Thesis, Technische
Universiteit Eindhoven, 2000.

Nordmark, A.B.; “Non-periodic Motion Caused by Grazing Incidence in an Impact Oscillator”; Journal of
Sound an Vibration, 145, pp. 279-297, 1991.

Nusse, H.E., Ott, E., Yorke, J.A.; “Border-collision Bifurcation: An Explanation for Observed Phenomena”;
Phys. Rev. E, 49, pp. 1073-1076, 1994.

Van de Vrande, B.L., Van Campen, D.H. and De Kraker, A.;“An aproximate Analysis od Dry-Friction-
Induced Stick-slip Vibrations by a Smoothing Procedure”; Nonlinear Dynamics, 19(2), pp. 157-169, 1999.

Virgin, L.N. and Begley, C.J.;“Grazing Bifurcations and Basins of Attraction in an Impact-friction Oscillator”;
Physica D 130, pp- 43-57, 1999.



