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Abstract. The purpose of this paper is to suggest a criterion for the optimal placement of collocated piezoelectric 
actuator-sensor pairs on a thin flexible plate using modal controllability and observability measures. A finite element 
approach is used for constructing the nominal model of the plant. The dimension of the model is then reduced by a 
combination of modal reduction techniques and system controllability and observability analysis. The optimum 
locations of the piezoelectric elements are then determinated by an optimization function that considers the 
participation of each vibration mode in the system response. The fundamental formulation of this optimization 
procedure is applied to a flexible thin plate type structure and the performance of the presented methodology is shown 
through numeric simulations. The work is concluded presenting the potentialities of the optimization methodology 
proposed and future developments to be implemented. 
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1. Introduction 
 

The development of smart structures technology in recent years has provided numerous opportunities for vibration 
control applications. The use of piezoelectric ceramics has shown great promise in the development of this technology 
(Banks et al, 1996). The ability of these materials to convert mechanical strains into electrical voltage and vice versa 
allows them to be used as actuators and sensors once placed on flexible structures. The use of piezoelectric material as 
actuators in vibration control is also beneficial because these elements only excite the elastic modes of the structures 
without exciting the rigid body modes. This is important since very often only elastic motions of the structures need to 
be controlled. The continuous nature of structures allows one to choose where the piezoelectric patches are to be placed. 
Therefore, it is natural to ask where the actuators and sensors should be placed on a structure so that the performance of 
the composite structure is optimized. One can find locations on a structure where the controllability and observability 
measures of imp ortant modes are maximized (Moheimani and Ryall, 1999). 

The choice of the actuator location is an important issue in the design of actively controlled structures. The actuators 
should be placed at the locations so that the desired modes are excited most effectively (Pota and Alberts, 1995). 
Various engineering applications using classical optimization and genetic algorithm schemes for the determination of 
optimal piezoelectric actuator placement have been reported. Kirby and Matic (1994) worked with genetic algorithms to 
determine optimal actuator size and location for two piezoelectric actuators bonded to a cantilever beam. Pereira and 
Steffen Jr. (2002) used a discrete-continuous optimization technique to determine the position of the actuators along the 
flexible structure and to obtain the controller gains. In that work the goal was to minimize the control effort applied to a 
beam type structure. Gawronski (1997) addresses the problem of actuator and sensor placement using their notion of 
modal controllability and observability. Also, Crawley and de Luis (1987) attempt to find the optimal placement for 
piezoelectric actuators by determining the location of high average strain on structures. Authors of (Hwang et al, 1997) 
find the placement for collocated piezoelectric actuator-sensor pairs on an all-clamped thin plate by determining the 
location of high position sensitivity of each mode. A number of other researchers (Fahroo and Wang, 1997; Demetriou, 
2000) use the optimization of quadratic performance indexes to find optimal location for piezoelectric actuators and 
sensors for effective structural vibration suppression. These performance indexes are dependent on the choice of 
controllers. Therefore, while the final positions of the actuators and sensors may be optimal for one particular control 
law, it may not be a suitable choice for other compensators. 

In this paper, the measures of controllability and observability are based on the modal cost function or modal cost 
analysis, as proposed by Skelton and Yousuff (1983). Such measures are used to guide the placement of sensors and 
actuators in flexible piezo-actuated structures. This paper is organized as follows: Section 2 discusses the modeling of a 
piezoelectric laminate plate. Section 3 describes the notion of modal cost function to find the optimal placement of 



piezoelectric actuators-sensors on the plate. Section 4 presents a numerical example of the application of the 
optimization procedure for a thin plate with simply supported boundary conditions. Section 5 gives overall conclusions 
of the paper. 
  
2.  Finite Element Discretization 
 

In the present formulation, the following assumptions (Reddy, 1999) are considered: 
• the piezoelectric layers are perfectly bonded together;  
• the formulation is restricted to linear elastic material behavior (small displacement and strains); 
• this formulation uses the Kirchhoff assumption (thin plate) in which the transverse normal remains straight  

after deformation and they also rotate such that they always remain perpendicular to the mid-surface. 
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Figure 1. Coordinate system of a laminated finite element with integrated piezoelectric material. 

 
In this work the following linear constitutive relations for piezoelectric materials are employed (Taylor et al, 1985): 

{ } [ ]{ } [ ]{ }EeCE −= εσ  
 
{ } [ ] { } [ ]{ }EeD ST ξε +=  

(1) 
 

(2) 

where the superscript S means that the values are measured at constant strain and the superscript E means that the 
values are measured at constant electric field, {σ} is the stress tensor, {D} is the electric displacement vector, {ε} is the 
strain tensor, {E} is the electric field, [CE] is the elastic constants at constant electric field, [e] denotes the piezoelectric 
stress coefficients, and [ξS] is the dielectric tensor at constant mechanical strain. 

The relation between [e] and [d], the piezoelectric strain coefficient, is: 

[ ] [ ][ ]dCe E=  (3) 

The application of voltage to the element is analogous to the application of heat to a bimetallic strip. The voltage 

aΦ  across the bender element forces the bottom layer to expand, while the upper layer contracts, as depicted in Fig. 2. 
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Figure 2. Curvature of a plate produced by the expansion of one piezoelectric layer and contraction of the other. 

 

The result of these physical changes is a strong curvature; this implies in a large deflection at the tip when the other 
end is clamped (see Fig. 2). The tip deflection may be much larger than the change in length of either ceramic layer. 
Due to the reciprocity effect, deformation of the sensor will produce a charge across the sensor electrode, which is 
collected through the sensor surface as an electric voltage sΦ . 

 

 



 
When only the poling direction is taken into account, the applied or sensed electric potential through the actuator or 

sensor element is given by the following equation (Lopes et al., 2000): 
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where h and Φ  (see Fig. 2) are the thickness and the maximum electric potential at the external surface of the 
corresponding piezoelectric element (actuator and sensor), and z (za and zs) is defined over the intervals: 
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(6) 

Now, assuming that the electric field (E) is constant through the actuator and sensor elements thickness, the gradient 
operators are: 

h
B

dz
dE z

z Φ−=Φ−=Φ−=  
 

(7) 

 
2.1  Obtaining the Element Matrices 

Hamilton’s principle is employed here to derive the finite element equations. 
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where t1 and t2 are two arbitrary instants, T is  the kinetic energy, U is the potential energy, We denotes the work done by 
electrical forces, and Wm is the work done by magnetic forces, which is negligible for piezoelectric materials. The work 
done by electrical forces and magnetic forces is given by: 
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where D is the electric displacement vector, fb is the body force, fA is the surface force, and σq is the surface electrical 
stress. 

Two equilibrium equations written in generalized coordinates are presented (Abreu et al, 2004) for the k-th element 
(see Fig. 1): 
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(12) 

where ][ eK  is the extended element stiffness matrix and ][ e
qqM  is the element mass matrix. 

The mechanical stiffness matrix ][ e
qqK  is given by (Abreu et al, 2004): 
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where [X] is a 12 × 12 matrix given by Eq. (14): 



[ ]













































−−−−−−−

−−−−−−−

−−−−−−−

−−−−−−−

=

3
44

2
4

2
444

2
444

2
44

3
4

2
444

2
444

3
444

3
4

3
4

2
444

2
4

3
4

2
444

2
444

3
33

2
3

2
333

2
333

2
33

3
3

2
333

2
333

3
333

3
3

3
3

2
333

2
3

3
3

2
333

2
333

3
22

2
2

2
222

2
222

2
22

3
2

2
222

2
222

3
222

3
2

3
2

2
222

2
2

3
2

2
222

2
222

3
11

2
1

2
111

2
111

2
11

3
1

2
111

2
111

3
111

3
1

3
1

2
111

2
1

3
1

2
111

2
111

302302010

332020100
1

302302010
332020100

1
302302010

332020100
1

302302010
332020100

1

yyxyyxxyx

yxxyyxxyx
yxyxyyxyxxyyxxyx

yyxyyxxyx
yxxyyxxyx

yxyxyyxyxxyyxxyx
yyxyyxxyx

yxxyyxxyx
yxyxyyxyxxyyxxyx

yyxyyxxyx
yxxyyxxyx

yxyxyyxyxxyyxxyx

X

                                                                           

 

 

 

 

(14) 

[ ]KL  is given by: 
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and ih  is given by: 
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and [Di] or [Da], [Dp], and [Ds], for i = 1,2,3, are calculated by following equation for the piezoelectric and plate 
material properties, respectively, and dA is equal to dxdy. 
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where ν  is the Poisson ratio and Ei denotes the Young’s modulus of the structure, sensor or actuator. 
The element mass matrix is given by (Abreu et al, 2004): 

[ ] [ ] [ ][ ] [ ]∑ ∫
=

−−=
3

1

1][
i A

Mi
T

M
T

i
e
qq XdALHLXM ρ  

 
(20) 

where aρρ =1 , pρρ =2 , sρρ =3 , and [ ]iH  (for i = 1,2,3) are: 
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The electrical-mechanical coupling stiffness matrix ][ e
qK Φ  and dielectric stiffness matrix ][ eKΦΦ  are given by 

(Abreu et al, 2004): 
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(27) 

The Eqs. (24), (25), (26), and (27) are integrated numerically by using the Gauss-quadrature integration method 
(Bathe, 1982): 
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where (ξ, η) are the Gaussian integration point coordinates and Wξ and Wη are the associated weight factors. 
 
2.2.  Obtaining the Global Matrices 
 

Each of these element matrices can be assembled into global matrices. The assemblage process to obtain the global 
matrices is written as: 
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(33) 

where N is the number of finite elements and [ ]kT  is the distribution matrix defined by: 
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where ndof  is the number of degrees of freedom of the entire structure, and mk denotes the index vector containing the 
degrees of freedom (3 dof) of the n-th node (1, 2, 3 or 4 – see Fig. 1) in the k-th finite element given by: 

{ }kkkk nnnm 31323 −−=  
(35) 

Considering that na actuators and ns sensors are distributed in the plate, Eqs. (11) and (12) can be written in the 
global form: 
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where [ ]ikT  is the distribution matrix (Eq. 34) which shows the position of the k-th element in the plate structure by 

using zero-one inputs, where the zero input means that no piezoelectric actuator/sensor is present, and one input means 
that there is an actuator/sensor in that particular element position, ien  is the number of finite elements of the i-th 

piezoelectric actuator/sensor, and { }ζ  is the nodal displacement vector of the global structure. 
In the piezoelectric sensor there is no voltage applied to the corresponding element (Qa = 0), so that the electrical 

potential generated (sensor equation) is calculated by using Eq. (37), yielding: 
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The total voltage { }Φ  is composed by the voltage { }sΦ  that is sensed by the sensor, the voltage { }saΦ  that is 
sensed by the actuator (see Eq. 38), and by the applied voltage { }aΦ . Then, { }Φ  can be expressed by: 

{ } { } { } { }asas Φ+Φ+Φ=Φ  
(39) 

The global dynamic equation can be formed by substituting Eq. (38) into Eq. (39) and then into Eq. (36). Thus, 
moving the forces due to actuator together with the mechanical forces to the right hand side of the resulting equation, 
yields: 
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where [ ]elK  is the electric stiffness written as: 
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The system static equation is written by using Eq. (40) as follows: 

{ } { } { }( )elqq FFK += −1* ][ζ  (44) 

Transforming Eq. (40) in state-space form, results: 
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(50) 

where ][ gK  and ][ aC  are the stiffness and damping matrices obtained by the modal transformation of the global 

matrices ( ][ *
qqK  and ][ gC ) with the modal matrix ][φ  (Thomson, 1973), n is the number of selected vibration modes, 

and ][ gC  is the global damping matrix, obtained by the relation: 

[ ] [ ]*][ qqa KMC βα +=  (51) 

where α  and β  are the Rayleigh coefficients (Thomson, 1973). 
 
3.  Modal cost function 
 

In this section the problem of choosing the optimum locations for the piezoelectric elements used in the active 
vibration control of the structure is discussed. For this purpose, modal cost techniques will be used, i.e., how the 
controllability/obsevability of the system is changed as the piezoelectric actuators/sensors move along the structure 
(Skelton and Yousuff, 1983). 

Assuming the pair (A,B) controllable and (A, C) observable, the controllability and observability are measured 
according to the grammians, as defined in the following equations (Laub et al, 1973): 
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where tf is some fixed final time and Wc and Wo satisfy the algebraic Lyapunov equations: 
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Skelton et al (1988) suggested a measure of the effect of the actuators/sensors positions in the dynamical system by 
using a quadratic cost function: 
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where the vector yi(t) is composed of output variables xi due to impulsive inputs ui(t) = δ(t) (with uj(t) = 0, i ≠ j), applied 
at t  0, with zero initial conditions, and Qc is a weight matrix. 

Substituting the relation: 

( ) ( )tCxty ii =  (57) 

into Eq. (56), yields: 
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The unit impulse response for zero initial condition in the ith-diretion is given by (Ogata, 2001): 
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Considering zero initial conditions, Eq. (59) is given by: 

( ) Betx Ati =  (60) 

Substituting Eq. (60) into (58), yields: 
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Substituting Eq. (50) into (59), the cost function V is derived as follows: 

{ }T
cc CCWQV trace=  (62) 

where trace{ } denotes the trace (diagonal sum) of the matrix { }. 
If the cost function (V) of a particular sensor/actuator location is zero, the sensor/actuator has no authority over 

those modes. On the other hand, if a given sensor/actuator location has a maximum cost value, the actuator/sensor has 
maximum authority over those modes. 

Based on these principles it is possible (Skelton et al, 1988): 
• to compare different sensor and actuator configurations and to choose the one that contributes the most to the 

cost function, and, 
• to analyze the importance of the contribution of a given sensor/actuator in the cost function V with respect to 

the others. 
 

4.  Optimal placement of piezo sensors and actuators by using the modal cost function 
 

In order to test the proposed optimization method to find the optimal placement of sensors and actuators, a simply 
supported plate containing three set of sensor/actuator PVDF/PZT ceramic piezoelectric elements bonded to the plate 
surface are considered (see Fig. 3). 
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Figure 3. A thin plate with the piezoelectric patches attached. 
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The characteristics of the resulting mechatronic structure are shown in Table 1. 
 

Table 1. Characteristics of the piezo-structure. 

 

 
 

 
 
 
 
 
 
 
 

The main purpose of this section is to find the optimal placement of sensors and actuators (x1, y1) pairs bonded to 
the surfaces of the plate. The optimization procedure given in the previous section is used. In this case the five lowest 
frequency modes (n = 5) are used to calculate the cost function V. To diminish the computational effort, the structure 
was modeled by using a 6 × 4 finite element mesh. 

The output observability/controllability, that is the participation of each sensor/actuator in the output cost function 
is computed by using Eq. (62). It means that the configuration presenting the largest cost function index is the one 
whose output is the largest. Three computed outputs (Eq. 62) of the system for different placements of the sensor and 
actuator (x1, y1) are summarized in Tab. 2, where the weight matrix Qc = I (identity matrix), and the matrices A, B and C 
are given by Eqs. (48), (49) and (50), respectively. 

 
Table 2. Piezoelectric positions (x1, y1) on the plate structure and the cost function V. 

 
Piezoelectric Positions (x1, y1)  
1 2 3 Function V 

0.1; 0.1 0.1; 0.2 0.4; 0.2 0.47689 
0.1; 0.1 0.3; 0.1 0.4; 0.2 0.40887 
0.1; 0.1 0.4; 0.1 0.3; 0.2 0.40785 

 
The optimum solution (largest V) (x1, y1) is equal to: (0.1; 0.1) for the first pair; (0.1; 0.2) for the second and (0.4; 0.2) 
for the third pair (see Fig. 4). 
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Figure 4. Optimal positions of the piezoelectric elements on the plate structure. 
 
5.  Conclusions 

 
The optimization methodology allowed the placement of collocated actuator-sensor pairs for effective vibration 

reduction. The procedure used for placing sensors and actuators along the smart structure (modal cost technique) was 
proven to be effective. Besides, the modal cost technique has a strong intuitive appeal. It was shown that the developed 
methodology could be used for a collocated actuator-sensor system. The optimization methodology can also be used for 
more complicated flexible structures using modeling techniques such as finite element method. 
 

  Piezoelectric  
Properties Units Sensor Actuator Plate 

E (Young’s modulus) Gpa 2 69 207 
ρ (density) Kg/m3 1780 7700 7870 
d31 (Charge constant) C/m2/(N/m2) 23×10-12 -179×10-12 ---- 
Ly (width) m × 10-3 100 100 400 
Lx (length) m × 10-3 100 100 600 
h (thickness) m × 10-3 0.205 0.254 1.0 
kd (dielectric constant) ---- 12 1800 ---- 
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