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Abstract. The purpose of this paper is to suggest a criterion for the optimal placement of collocated piezoelectric
actuator-sensor pairson a thin flexible plate using modal controllability and observability measures. A finite element
approach is used for constructing the nominal model of the plant. The dimension of the model is then reduced by a
combination of modal reduction techniques and system controllability and observability analysis. The optimum
locations of the piezoelectric elements are then determinated by an optimization function that considers the
participation of each vibration mode in the system response. The fundamental formulation of this optimization
procedureisapplied to a flexible thin plate type structure and the performance of the presented methodology is shown
through numeric simulations. The work is concluded presenting the potentialities of the optimization methodology
proposed and future developments to be i mplemented.
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1. Introduction

The development of smart structures technology in recent years has provided numerous opportunities for vibration
control applications. The use of piezoelectric ceramics has shown great promise in the development of this technology
(Banks et al, 1996). The ability of these materials to convert mechanical strains into electrical voltage and vice versa
allows them to be used as actuators and sensors once placed on flexible structures. The use of piezoelectric material as
actuators in vibration control is also beneficial because these elements only excite the elastic modes of the structures
without exciting the rigid body modes. This isimportant since very often only elastic motions of the structures need to
be controlled. The continuous nature of structures allows one to choose where the piezoel ectric patches are to be placed.
Therefore, it is natural to ask where the actuators and sensors should be placed on a structure so that the performance of
the composite structure is optimized. One can find locations on a structure where the controllability and observability
measures of imp ortant modes are maximized (Moheimani and Ryall, 1999).

The choice of the actuator location is an important issue in the design of actively controlled structures. The actuators
should be placed at the locations so that the desired modes are excited most effectively (Pota and Alberts, 1995).
Various engineering applications using classical optimization and genetic algorithm schemes for the determination of
optimal piezoelectric actuator placement have been reported. Kirby and Matic (1994) worked with genetic algorithms to
determine optimal actuator size and location for two piezoelectric actuators bonded to a cantilever beam. Pereira and
Steffen Jr. (2002) used a discrete-continuous opti mization technique to determine the position of the actuators along the
flexible structure and to obtain the controller gains. In that work the goal was to minimize the control effort applied to a
beam type structure. Gawronski (1997) addresses the problem of actuator and sensor placement using their notion of
modal controllability and observability. Also, Crawley and de Luis (1987) attempt to find the optimal placement for
piezoel ectric actuators by determining the location of high average strain on structures. Authors of (Hwang et al, 1997)
find the placement for collocated piezoelectric actuator-sensor pairs on an all-clamped thin plate by determining the
location of high position sensitivity of each mode. A number of other researchers (Fahroo and Wang, 1997; Demetriou,
2000) use the optimization of quadratic performance indexes to find optimal location for piezoelectric actuators and
sensors for effective structural vibration suppression. These performance indexes are dependent on the choice of
controllers. Therefore, while the final positions of the actuators and sensors may be optimal for one particular control
law, it may not be a suitable choice for other compensators.

In this paper, the measures of controllability and observability are based on the modal cost function or modal cost
analysis, as proposed by Skelton and Y ousuff (1983). Such measures are used to guide the placement of sensors and
actuators in flexible piezo-actuated structures. This paper is organized as follows: Section 2 discusses the modeling of a
piezoelectric laminate plate. Section 3 describes the notion of modal cost function to find the optimal placement of



piezoelectric actuators-sensors on the plate. Section 4 presents a numerical example of the application of the

optimization procedure for a thin plate with simply supported boundary conditions. Section 5 gives overall conclusions
of the paper.

2. Finite Element Discretization

In the present formulation, the following assumptions (Reddy, 1999) are considered:
- thepiezoelectric layers are perfectly bonded together;

the formulation is restricted to linear elastic material behavior (small displacement and strains);

this formulation uses the Kirchhoff assumption (thin plate) in which the transverse normal remains straight
after deformation and they also rotate such that they always remain perpendicular to the mid-surface.
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Figure 1. Coordinate system of alaminated finite element with integrated piezoel ectric material.

In thiswork the following linear constitutive relations for piezoel ectric materials are employed (Taylor et al, 1985):
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where the superscript S means that the values are measured at constant strain and the superscript E means that the
values are measured at constant electric field, {s} is the stress tensor, { D} isthe electric displacement vector, {€} isthe
strain tensor, {E} is the eectric field, [CF] is the elastic constants at constant electric field, [€] denotes the piezoelectric
stress coefficients, and [x7] is the dielectric tensor at constant mechanical strain.

Therelation between [€] and [d], the piezoelectric strain coefficient, is:
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The application of voltage to the element is analogous to the application of heat to a bimetallic strip. The voltage

F , acrossthe bender element forces the bottom layer to expand, while the upper layer contracts, as depicted in Fig. 2.
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Figure 2. Curvature of aplate produced by the expansion of one piezoelectric layer and contraction of the other.

The result of these physical changes is astrong curvature; thisimpliesin alarge deflection at the tip when the other
end is clamped (see Fig. 2). The tip deflection may be much larger than the change in length of either ceramic layer.

Due to the reciprocity effect, deformation of the sensor will produce a charge across the sensor electrode, which is
collected through the sensor surface as an electric voltage F .



When only the poling direction is taken into account, the applied or sensed electric potential through the actuator or
sensor element is given by the following equation (Lopes et al., 2000):
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where h and F (see Fig. 2) are the thickness and the maximum electric potential at the external surface of the
corresponding piezoel ectric element (actuator and sensor), and z (z, and z) isdefined over theintervals:
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Now, assuming that the electric field (E) is constant through the actuator and sensor el ements thickness, the gradient
operators are:
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2.1 Obtaining the Element Matrices
Hamilton’s principle is employed here to derive the finite element equations.
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where t; and t, are two arbitrary instants, T is the kinetic energy, U isthe potential energy, W, denotes the work done by

electrical forces, and W, is the work done by magnetic forces, which is negligible for piezoelectric materials. The work
done by electrical forces and magnetic forcesisgiven by:

_1gr .
W, = ZsjE} {D}av ©
dw = e} {fpJav + oo} { aJdA- (yF's (dA (10)

\% A A

where D is the electric displacement vector, f, is the body force, fa is the surface force, and s is the surface electrical
stress.

Two equilibrium equations written in generalized coordinates are presented (Abreu et al, 2004) for the k-th element
(seeFig. 1):
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where [K®] isthe extended element stiffness matrix and [M g,] isthe element mass matrix.
The mechanical stiffness matrix [Kgq] isgiven by (Abreu et al, 2004):
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where[X] isal2” 12 matrix given by Eq. (14):
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[LK] isgiven by:
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and h; isgiven by:
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and [Di] or D4, Dp], and [Dg], for i = 1,2,3, are calculated by following equation for the piezoelectric and plate
material properties, respectively, and dA is equal to dxdy.
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where n isthe Poisson ratio and E; denotes the Y oung’ s modulus of the structure, sensor or actuator.
The element mass matrix is given by (Abreu et al, 2004):
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The electrical-mechanical coupling stiffness matrix [K;'F] and dielectric stiffness matrix [KE:] are given by
(Abreu et al, 2004):
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The Egs. (24), (25), (26), and (27) are integrated numerically by using the Gauss-quadrature integration method
(Bathe, 1982):
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where (x, h) are the Gaussian integration point coordinates and W, and W, are the associated weight factors.
2.2. Obtaining the Global Matrices

Each of these element matrices can be assembled into global matrices. The assemblage process to obtain the global
matricesiswritten as:
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where N is the number of finite elements and [Tk] is the distribution matrix defined by:
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fori=1,2,...,12,andj= 1,2, ...,Ngof

where ngor is the number of degrees of freedom of the entire structure, and my denotes the index vector containing the
degrees of freedom (3 dof) of the n-th node (1, 2, 3 or 4 —see Fig. 1) in the k-th finite element given by:
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Considering that n, actuators and ng sensors are distributed in the plate, Egs. (11) and (12) can be written in the
global form:
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where [Tk]i is the distribution matrix (Eq. 34) which shows the position of the k-th element in the plate structure by
using zero-one inputs, where the zero input means that no piezoel ectric actuator/sensor is present, and one input means
that there is an actuator/sensor in that particular element position, n, is the number of finite elements of the i-th
piezoelectric actuator/sensor, and {z} isthe nodal displacement vector of the global structure.

In the piezoelectric sensor there is no voltage applied to the corresponding element (Q, = 0), so that the electrical
potential generated (sensor equation) is calculated by using Eq. (37), yielding:
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The total voltage {F} is composed by the voltage {F S} that is sensed by the sensor, the voltage {Fsa} that is
sensed by the actuator (see Eq. 38), and by the applied voltage {F a} . Then, {F} can be expressed by:
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The global dynamic equation can be formed by substituting Eq. (38) into Eq. (39) and then into Eq. (36). Thus,
moving the forces due to actuator together with the mechanical forces to the right hand side of the resulting equation,
yields:
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where [ K;q] , and {Fd} (electrical force) are given by, respectively:
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The system static equation iswritten by using Eq. (40) asfollows:
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Transforming Eq. (40) in state-space form, results:
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where [Kg] and [Ea] are the stiffness and damping matrices obtained by the modal transformation of the global
matrices ([ K;q] and [Cq]) with the moda matrix [f ] (Thomson, 1973), n is the number of selected vibration modes,
and [Cq] isthe global damping matrix, obtained by the relation:

[cal=atm+ bk )
wherea and b arethe Rayleigh coefficients (Thomson, 1973).

3. Modal cost function

In this section the problem of choosing the optimum locations for the piezoelectric elements used in the active
vibration control of the structure is discussed. For this purpose, modal cost techniques will be used, i.e., how the
controllability/obsevability of the system is changed as the piezoelectric actuators/sensors move along the structure
(Skelton and Y ousuff, 1983).

Assuming the pair (A,B) controllable and @, C) observable, the controllability and observability are measured
according to the grammians, as defined in the following equations(Laub et a, 1973):

t

N 52
WC (O’tf ): GAt BBI eATt dt ( )
0
ts
w,(0.t; )= At Ct ce (53
0
where t; is some fixed final time and W, and W, satisfy the algebraic Lyapunov equations:
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Skelton et al (1988) suggested a measure of the effect of the actuators/sensors positions in the dynamical system by
using aquadratic cost function:
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where the vector y'(t) is composed of output variables X' due to impulsive inputs u;(t) = d(t) (with ui® =0,i1 j), applied
att 0, with zeroinitial conditions, and Q. is aweight matrix.

Substituting the relation:
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into Eq. (56), yields:
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The unit impulse response for zero initial condition in theith-diretion is given by (Ogata, 2001):
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Considering zero initial conditions, Eq. (59) is given by:
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Substituting Eg. (60) into (58), yields:
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Substituting Eg. (50) into (59), the cost functionV is derived asfollows:
(62)

V =tracdQ,cw,C

wheretrace{ } denotesthe trace (diagonal sum) of the matrix { }.

If the cost function (V) of aparticular sensor/actuator location is zero, the sensor/actuator has no authority over
those modes. On the other hand, if a given sensor/actuator |ocation has a maximum cost val ue, the actuator/sensor has
maximum authority over those modes.

Based on these principlesit is possible (Skelton et al, 1988):

to compare different sensor and actuator configurations and to choose the one that contributes the most to the
cost function, and,

to analyze the importance of the contribution of a given sensor/actuator in the cost function V with respect to
the others.

4. Optimal placement of piezo sensorsand actuator s by using the modal cost function

In order to test the proposed optimization method to find the optimal placement of sensors and actuators, a simply
supported plate containing three set of sensor/actuator PVDF/PZT ceramic piezoelectric elements bonded to the plate
surface are considered (see Fig. 3).
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Figure 3. A thin plate with the piezoel ectric patches attached.



The characteristics of the resulting mechatronic structure are shown in Table 1.

Table 1. Characteristics of the piezo-structure.

Piezoelectric

Properties Units Sensor | Actuator Plate
E (Y oung’'s modulus) Gpa 2 69 207
r (density) Kg/nt 1780 7700 7870
ds1 (Charge constant) | C/nf/(N/nf)| 23 10%2 | -179 1072
Ly (width) m’~ 10° 100 100 400
Ly (length) m’~ 10° 100 100 600
h (thickness) m’~ 10° 0.205 0.254 10
k4 (dielectric constant) 12 1800

The main purpose of this section is to find the optimal placement of sensors and actuators (X1, y;) pairs bonded to
the surfaces of the plate. The optimization procedure given in the previous section is used. In this case the five lowest
frequency modes (h = 5) are used to calculate the cost function V. To diminish the computational effort, the structure
was modeled by using a6 x 4 finite element mesh.

The output observability/controllability, that is the participation of each sensor/actuator in the output cost function
is computed by using Eq. (62). It means that the configuration presenting the largest cost function index is the one
whose output is the largest. Three computed outputs (Eq. 62) of the system for different placements of the sensor and
actuator (xq, y1) are summarized in Tab. 2, where the weight matrix Q; = | (identity matrix), and the matrices A, B and C
aregiven by Eqgs. (48), (49) and (50), respectively.

Table 2. Piezoel ectric positions (X1, y1) on the plate structure and the cost function V.

Piezoelectric Positions (X1, Y1)

1 2 3 Function V
0.1,0.1 0.1,0.2 0.4;0.2 0.47689
0.1,0.1 0.3;0.1 0.4;0.2 0.40887
0.1,0.1 04;0.1 0.3;0.2 0.40785

The optimum solution (largest V) (x4, y1) is equal to: (0.1; 0.1) for the first pair; (0.1; 0.2) for the second and (0.4; 0.2)
for the third pair (see Fig. 4).

X

Figure 4. Optimal positions of the piezoel ectric elements on the plate structure.
5. Conclusions

The optimization methodology allowed the placement of collocated actuator-sensor pairs for effective vibration
reduction. The procedure used for placing sensors and actuators along the smart structure (modal cost technique) was
proven to be effective. Besides, the modal cost technique has a strong intuitive appeal. It was shown that the devel oped
methodology could be used for a collocated actuator-sensor system. The optimization methodology can also be used for
more complicated flexible structures using modeling techniques such as finite element method.
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