
 
Proceedings of the XI DINAME, 28th February-4th  March, 2005 - Ouro Preto - MG - Brazil 
Edited by D.A. Rade  and V. Steffen Jr.

© 2005 - ABCM. All rights reserved. 
 
 

GEOMETRICAL DISCONTINUITIES IN STRESS UNILATERAL ELASTIC 
STRINGS  

 
José Eduardo Souza de Cursi  
Département Mécanique - LMR 
Institut National des Sciences Appliquées de Rouen 
Avenue de l’Université BP 8 
76801 Sainte Etienne du Rouvray CEDEX  
souza@insa-rouen.fr  
 
Abstract. Strings are ideally flexible one-dimensional continuous media exhibiting an unilateral behaviour: their 
internal efforts are always traction efforts. Under a compressive force, a string changes its geometry in such a way 
that the compression becomes traction. We consider the dynamical behaviour of stress-unilateral strings: the 
description of the motion of the string leads to a hyperbolic non linear system of conservation laws, which is linearly 
degenerated for small deformation analysis. We  present an analysis of the propagation of the discontinuities in this 
situation: existence and propagation of geometrical discontinuities related to the stress-unilateral behaviour, tension 
and deformation waves.  We present some numerical  results furnished by a Godunov based method.. 
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1. Introduction 
 

Strings are ideally flexible one-dimensional continuous media having the physical property that their internal efforts 
are tangent to their actual configuration. In addition, all the internal efforts correspond to tractions:   under a 
compressive force, a string adapts its geometry in such a way that the compression becomes traction.   Thus, strings are  
stress unilateral media. 

The stress unilateral property of strings has been considered in the framework of static (Souza de Cursi, 1985; Souza 
de Cursi, 1987) or quasistatic problems (Souza de Cursi, 1990; Souza de Cursi, 1992). Extensions to bidimensional 
situations concerning fabrics (Schneider and Souza de Cursi, 1996; Souza de Cursi, 2004) and sail modelling (Le Maître 
et al., 1997; Le Maître et al., 1998a) can also be found in the literature.  However, evolution problems taking into 
account the stress unilateral property remain incipient (Le Maître et al., 1998b; Pego and Serre, 1988; Gilquin, 1989; 
Gilquin and Serre, 1989). This work  is a step in this direction: the mechanical problem describing the evolution of a 
stress unilateral elastic string is written as a hyperbolic system and the propagation of the discontinuities is analyzed. 
The stress unilateral property introduces geometrical discontinuities connected to the unitary tangent to the 
configuration. The analysis of the propagation of the discontinuities is use to construct solutions of the mechanical 
problem. 
 
2. Description of the motion of a stress unilateral string 

 
In this section, we present the general equations describing the motion. We adopt the Lagrange’s approach, where 

the quantities are brought to a fixed configuration.  
 
2.1. Geometrical description  in Lagrange’s variables. 
 

Strings are one-dimensional continuous media and the particles of the string are described by a single scalar 
variable.  The natural choice for this scalar variable is the arc’s length of the string, which may be taken on a natural 
configuration (Lagrange’s approach) or on the actual configuration (Euler’s approach).  So, from the Lagrange’s 
standpoint, the particles of the string are brought to a scalar ( )l,0a∈ ⊂ R , where l  is the natural length of the string (i. 
e., its length at equilibrium with  not any external forces applied) and R is the set of the real numbers.  The position of 
each particle a is a point of the three dimensional space and is given by a vector x = (x1, x2, x3)t ∈ R3.  The 
configurations of a string are curbs in the three dimensional space and the position of the particle a   at the time t  is 
x(a,t) = (x1(a,t), x2(a,t), x3(a,t))t ∈ R3. Thus, the position of the whole string is given by a function ( ) ( ) 3R00 →× τ,,: lx , 
where ( )τ,0  is the time interval under consideration.   

 
Let us denote the derivatives by an index: for instance,  
 

22
ttta ttta ∂∂=∂∂==∂∂==∂∂=′= xxxxxxxxxx &&&& ;;                                                                          (1) 



The Euler’s variable is denoted by s and corresponds to the arc length on the actual configuration x. It is connected 
to the Lagrange’s variable a  by the relation  
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where the scalar  ε   is the deformation. The unitary tangent is the vector 
 

aa xxt = .                                                                                                                                                                 (3)  
 

2.2. Constitutive law  
 
The internal efforts are given by  a vector  T=Tt, where the scalar T  is the tension. In the framework of infinitesimal 

deformations (but finite displacements are considered), the constitutive law reads as 
 

0TkT ≥= andε ,                                                                                                                       (4)  
 

where k > 0  is the elastic modulus. The equality corresponds to the standard Hooke’s law and the inequality 
corresponds to the stress unilateral property. Equation (4) implies that  ε ≥ 0,  i. e., the length of  the  string can only 
increase, but not decrease. Thus, the length of every elementary part  of the string is at least equal to the natural length 
and we have   ds ≥ da. 
 
2.3. Conservation of the mass and equation of the motion in Lagrange’s variables. 
 

We denote by ρ0 > 0 the natural linear mass density of the string and by ρ = ρ(a,t) > 0 the actual one. In the 
Lagrange’s approach, the conservation of the mass reads as 

 
01 ρερ )( += .                                                                                                                                                              (5) 

 
The external distributed forces are given by ),( txxgρ and the motion of the string verifies 
 

( )Tt0ss0
s ttt <<<<=+
∂
∂ ,)(,),( lxxxgT ρρ   .                                                                                               (6) 

 
By combining this equation with  the conservation of the mass (Eq.  (5)), we obtain  the equation of the motion  in 

Lagrange’s variables: 
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2.4. Boundary  and Initial  Conditions. 

 
The initial conditions are 
 

)()(),(;)(),( l& <<== a0a0aa0a 0t0 xxxx                                                                                                      (8) 
 
Typical boundary conditions  are the mooring of the particle a = 0 and  a force )),(( tlxf  applied to the particle 
l=a . These conditions reads as  

 
)),((),(;),( tt0t0 ll xfTx ==                                                                                                                            (9) 

 
 



 
3. The hyperbolic system describing the motion of a string. 

 
In this section, the equations of motion are reformulated as a quasilinear hyperbolic system and some properties 

concerning the propagation of the discontinuities are derived. 
 
Let us introduce  
 

ta xvxu == ,                                                                                                                                                       (10) 
  

( ) ( )t321321321
t vvvuuuxxx ,,,,,,,,,, == vuxU .                                                                                                 (11) 

 
Then, 
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Moreover, 
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and  Eq. (7) reads as follows: 

 
( ) ),(,)( Tt0a00at <<<<=++ lUBUUAU ,                                                                                               (14) 

 
where  
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Here, ijδ  denotes Kronecker’s symbol  ( ijδ =1 for i=j and ijδ =0 otherwise).   The eigenvalues and eigenvectors of  

)(UA  are given in Table 1. Since  
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we have  the results  3.1 and 3.2 below (Jeffrey, 1976 ; Leroux and Schatzman, 1981). 

 
Theorem 3.1:  The system  given in Eq. (14) is hyperbolic linearly degenerate for 1≥u  and ultrahyperbolic for 

1<u .  
 

 
Theorem 3.2:  All the admissible discontinuities are contact discontinuities. Moreover, the velocity of propagation 
of any discontinuity coincides with one of the eigenvalues of )(UA . 

 
 



Table 1. Eigenvalues of  )(UA . 
Eigenvalue Multiplicity Example of associated eingenvector 

0
1

k
ρ

λ −=  1 ( )3121113211 uuuuuu000 λλλ −−−=E  

u
11k

0
32 −−==

ρ
λλ  2 

( )0uu0uu000 1222122 λλ−−=E ; 
( )1333133 u0uu0u000 λλ−−=E  

0654 === λλλ  3 
( )0000000014 =E ;  
( )0000000105 =E ; 
( )0000001006 =E  

u
11k

0
87 −==

ρ
λλ  2 

( )0uu0uu000 1727127 λλ−−=E ; 
( )1838138 u0uu0u000 λλ−−=E  

0
9

k
ρ

λ =  1 ( )3929193219 uuuuuu000 λλλ −−−=E  

 
 

 
Remark 3.3: 
 
3.3.1 – When finite deformation of the string is considered, the constitutive law (Eq. (4)) becomes   
 

0T1kT ≥+= and)log( ε .                                                                                                                           (18) 
 
In this case, the system has genuinely nonlinear fields (Carasso et al., 1984). 
 

3.3.2 – The eigenvalues  
0

k
ρ

±  define two families of straight characteristics.  

 

3.3.3 – For  plane problems, x = (x1, x2)t ∈ R2, 
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3.3.4 – For  one-dimensional problems,  x = x1 ∈ R, 
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λ −= , 02 =λ  ,  
0

3
k
ρ

λ = .  

 
3.3.5 – If, on the one hand, g  does not depend on  x&  and, on the other hand, f  and g  correspond to potentials, then 
Eq. (14)  is Hamiltonien (Marsden et al., 1977) 
 
 
 

4. Admissible discontinuities and conserved quantities 
 
We denote by  [ ] )()( −−+= aa www  the jump of the quantity  w along a discontinuity having velocity λ .  By 

rewriting  Eq. (13) as a system of conservation laws, the conditions of  Rankine-Hugoniot  (Jeffrey, 1976; Leroux and 
Schatzman, 1981)  show that 

 

[ ] [ ] [ ] [ ] [ ] 0Tv0vu0x =+=+=
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and we state  the result 4.1 below. 



 
 

Theorem 4.1:   

(i) The unitary tangent t = u/|u|   is continuous through the contact discontinuities having velocity 
0

k
ρ

±  (but the 

tension T and the velocity  v  may be discontinuous);  

(ii) the tension  T is continuous through the contact discontinuities propagating with velocity 
u
11k

0

−±
ρ

(but the 

unitary tangent t = u/|u| and the velocity  v   may be discontinuous) ; 
(iii) the unitary tangent  t = u/|u|, the tension T and the velocity  v  are continuous through the stationary 
discontinuities  (thus, the internal efforts  T = Tt  and the velocity v  are continuous) .  
 
Proof: (i) We have [ ] [ ] [ ] [ ]uuvT k2

00 ==−= λρλρ . Thus,  
 

[ ] [ ] [ ] [ ] 0t
u
uu

u
uuuu

u
u

=−=











−=−












−=−











 −
kkkkkk

1
k . 

 

(ii) We have [ ] [ ] [ ] [ ]u
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(iii) It is immediate that  [ ] [ ] 0== vT .  

 
 
5. Simple waves and the Riemann Problem. 

 
Let us consider the situation where the external forces f  and g  are constant:  then the solution is formed of an 

assembly of constant fields (Jeffrey, 1976). In addition, we set 
 

( ) ( )t3032021013210 gtvgtvgtvuuuttt ρρρρ −−−=−== ,,,,,)( gvuvuU   
and we have  
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The eigenvalues and eigenvectors of  ( )UA  are  given in Table 2. 



 
Table 2. Eigenvalues of  )(UA . 

Eigenvalue Multiplicity Example of associated eingenvector 

0
1

k
ρ

λ −=  1 ( )3121113211 uuuuuu λλλ −−−=E  

u
11k

0
32 −−==

ρ
λλ  2 

( )0uu0uu 1222122 λλ−−=E ; 

( )1333133 u0uu0u λλ−−=E  

u
11k

0
54 −==

ρ
λλ  2 

( )0uu0uu 1424124 λλ−−=E ; 

( )1535135 u0uu0u λλ−−=E  

0
6

k
ρ

λ =  1 ( )3626163216 uuuuuu λλλ −−−=E  

 
 

 
5.1. Simple waves  
 
The simple waves are obtained by solving the differential equations   idd EU =ξ .  The  solutions  are given in Table 3. 

The waves associated to the eigenvalues 1λ  and 6λ  are longitudinal tension ones carrying  variations of the tension: 
the unitary tangent  uut =  is constant  while u  varies. The simple waves associated to the eigenvalues 2λ , 3λ , 

4λ , 5λ  are deformation ones carrying variations of  the unitary tangent uut =  while u   remains constant. 

 
Table 3. Simple Waves associated to the Eq. (19)  

Eigenvalue Elementary solution 
1λ  ( ) 0100 e1e uvvuu ξξ λ −+== ;   

2λ  
( ) ( )( ) ( ) ( )( )t000

t
00 BAABAA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0020020 0AA θξθλθξθλ +−+−+= coscossinsinvv  

3λ  
( ) ( )( ) ( ) ( )( )t000

t
00 ABAABA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0030030 A0A θξθλθξθλ +−+−+= coscossinsinvv  

4λ  
( ) ( )( ) ( ) ( )( )t000

t
00 BAABAA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0040040 0AA θξθλθξθλ +−+−+= coscossinsinvv  

5λ  
( ) ( )( ) ( ) ( )( )t000

t
00 ABAABA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0050050 A0A θξθλθξθλ +−+−+= coscossinsinvv  

6λ  ( ) 0600 e1e uvvuu ξξ λ −+== ;  
 
 
5.2.  The Riemann Problem 
 

Let us consider  the propagation of  a  discontinuity  issued from  0a = : 
 

( )tLLL vuUU ==  (a < 0)    ;    ( )tRRR vuUU ==  (a > 0)    . 
 
We look for intermediary states iU  such that R54321L UUUUUUU →→→→→→ , where each change 
corresponds to a  simple wave associated to iλ .  We observe that the waves corresponding to  2λ  and 3λ  have the 
same speed:  the state 2U  cannot be observed. Analogously, 4U  cannot be observed. 

The intermediary states  are determined by using the Rankine-Hugoniot Equations. Let us denote 06 k ρλα == .  

Since  ,;;;;; 5R45342312L1 ttuuuuuuuutt ======  we have  
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By  adding  all these equations, we obtain the nonlinear system for the unknowns 3t and 1u , which reads as  
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By setting ( )333 θθ cossin=t  and  11r u=  , Eq. (24) becomes a nonlinear system of  two algebraic equations  

for the two unknowns  3θ  and 1r . The determination of  3θ  and 1r  determines the values of 3t and 1u  and the other 

unknowns 1v , 2v , 3v , 4v , 5v , 2t , 4t , 5t  are obtained from Eq. (23).  
 
 

5.3.  Two dimensional situations 
 
The eigenvalues and eigenvectors for two dimensional situations are given in Table 4 and the associated simple 

waves are given in Table 5.  
 

Table 4. Eigenvalues of  )(UA  for two dimensional situations. 
Eigenvalue Example of associated eingenvector 

0
1

k
ρ

λ −=  ( )2111211 uuuu λλ −−=E  

u
11k

0
2 −−=

ρ
λ  ( )1222122 uuuu λλ−−=E ; 

u
11k

0
3 −=

ρ
λ  ( )1323123 uuuu λλ−−=E ; 

0
4

k
ρ

λ =  ( )2414214 uuuu λλ −−=E  

 
 
 

Table 5. Simple waves for two dimensional situations  
Eigenvalue Elementary solution 

1λ  ( ) 0100 e1e uvvuu ξξ λ −+== ;  

2λ  
( ) ( )( ) ( ) ( )( )00000 AAAA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0020020 AA θξθλθξθλ +−+−+= coscossinsinvv  

3λ  
( ) ( )( ) ( ) ( )( )00000 AAAA θθθξθξ cossin,cossin =++= uu

( ) ( )( ) ( ) ( )( )( )t0030030 AA θξθλθξθλ +−+−+= coscossinsinvv  

4λ  ( ) 0400 e1e uvvuu ξξ λ −+== ;  
 
 

The Riemann problem  concerns intermediary states iU  such that R321L UUUUU →→→→ . It is solved by 
determining  2t and 1u  such that 
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A complete analysis of the two dimensional Riemann Problem may be found in Hanche-Olsen et al., 2001. 
 

 
5.4.  Examples of simple solutions 

 
Simple waves may be used in order to construct solutions by using the characteristics of the system: the boundary 

conditions may be interpreted as waves arriving from infinity. For 0 < t < 1λl− , longitudinal waves travel from 

l=a  to 0a =  with speed 1λ . At time t = 1λl− , the tension wave is reflected by the boundary 0a = . For instance, 

let us consider  the two dimensional situation where 1k = , 10 =ρ , 1=l , 0=g , 1−=f , 10a eu =),( , 0v =),( 0a .   
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Let us consider the same previous data except  1=f . In this case, longitudinal waves propagate with speed 

11 −=λ , since the unitary tangent  is constant. At time t = 1, the tension wave is reflected by the boundary 0a = . The 
solution is 
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6. Numerical Approach 
 

Numerical schemes adapted to this problem may be found in Pego and Serre, 1988; Gilquin, 1989; Gilquin and 
Serre, 1989. Glimm’s and Godunov’s approaches have shown to be effective to calculate. We show in Fig. 2, Fig. 3 and 
Fig. 4 the results furnished by a Godunov based method using the Riemmann solution given in section 5.3.  The results 
concern the point a = 1/2.  
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Figure 2 – Numerical results furnished by a Godunov-based approach 
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Figure 3 – Numerical results furnished by a Godunov-based approach 
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Figure 4 – Numerical results furnished by a Godunov-based approach 



 
7. Concluding Remarks 
 

We have presented a description of strings taking into account their stress unilateral property. The analysis of the 
equations show that the hyperbolic system associated to the motion of a string is linearly degenerated. The simple 
waves associated have been obtained and the solution of the Riemann Problem has been presented.   

Numerical schemes adapted to this problem may be found the literature. We have presented the results obtained by 
a Godunov method in some simple situations. 

Fabrics and flexible sails are two-dimensional continuous media having the stress unilateral property. The analysis 
of such a media will be matter of future work.   
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