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Abstract. The purpose of this paper is to present a simulation of rotating machinery using numerical methods to
correctly simulate the geometric damping that takes place when flexible models of the foundation are used. The
supporting soil is treated here as an homogeneous and isotropic viscoelastic media modeled as a semi-infinite half-
space where Sommerfeld´s radiation condition must be taken into account. A substructuring technique is employed to
use the dynamic behavior of the foundation/soil sub-system directly into rotor´s equations of motion in frequency
domain. The main advantage of a substructured analysis is that the dynamic response of the unbounded domain, which
frequently requires more DOF´s then the structure itself , can be obtained in a separated analysi using boundary or
finite/infinite elements. Numerical simulations demonstrating the importance of the soil influence in the unbalance
response of simply supported rotors grounded on rigid, non-massive foundations are also presented.
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1. Introduction

The development of sophisticated numerical methods for studying several problems concerning the vibration study
of rotating machinery has suffered a dramatic increase in the last ten years. Indeed, several phenomena that were put
aside due to the non existence of a proper methodology in rotordynamics can now be included in the equations of
motion of such dynamic systems. Rotating machines have many applications in today's industrial plants and are viewed
as complex  machines made primarily of a rotating set where one can find shafts, discs and bearings and of a heavy steel
or iron supporting structure  which is fixed upon a concrete or steel foundation resting on the surface of a supporting
soil. Cases of  rotating machinery where the foundation is partially buried in the surrounding soil are not uncommon
due to the better dynamic isolation of such alternatives.

The shape, materials and techniques involved in making such foundations are complex and demand sophisticated
numerical methods for a detailed dynamic analysis (Bonello, 2001). These foundations are connected to and supported
by soils that have also a complex dynamic behaviour mainly due to the dissipative effects of these almost infinite
media. The modelling procedures involved in the description of the dynamic behaviour of such media can be very time-
consuming, depending on the level of precision required for the analysis. Also, methods based on integral formulations
such as Boundary Element Methods (BEM) or Green´s Functions are unfamiliar to the vast majority of the structural
engineers and researchers of rotordynamics. A review of the main aspects involved in modelling the dynamic soil-
structure interaction (DSSI) shows that until very recently engineers did not recognise the role of the geometric
damping of the soil in the description of the dynamic behaviour of structures connected to it (Gazetas, 1983). Such
damping or dissipative mechanism arises in the rotating machinery modelling due to the propagation of the rotor energy
throughout the soil via mechanical waves. These non-reflected waves carry away part of the vibration energy of the
machine in an attenuation mechanism similar to the material (viscous or hysteretic) damping, hence the name geometric
damping (Wolf, 1985). Due to the presence of these attenuation phenomenon, vibration levels of structures connected to
the soil are quite distinct than those isolated by trenches or rigid piles (Barros, 1996).

Many numerical and analytic techniques have been created to model the geometric damping in DSSI: Mesquita Neto
(1989) and Romanini (1995) used specially developed Green´s Functions with the indirect version of BEM and Pontes
(1992) used the direct version of BEM with fundamental solutions of full-space. Barros (1996) used a hybrid model of
finite (FEM) and infinite elements which granted greater flexibility since allowed modelling of several imperfections in
the region close to the foundation such as buried structures or layered soils with no additional difficulty.

A common characteristic of all this methods based on boundary or domain discretization is that the dynamic
response of the soil-foundation set is obtained directly in the frequency domain via the so-called soil impedance matrix.
Mathematically this is due to the absence of a modal basis in which the movement of the soil-foundation set can be
represented since one cannot find separated mass, damping and stiffness matrices for the soil that characterise its
dynamics. An important characteristic of the soil-foundation system  is that its impedance matrix is obtained through
direct inversion of the foundation flexibility matrix which is calculated in turn via FEM or BEM. Besides, the terms of
such flexibility matrix usually present a distinct dependence of the frequency. Such dependence does not permit a
modal decomposition of the coupled machine-soil-foundation and therefore the procedures of modal analysis cannot be
employed.



2. Analysis of the rotor-foundation system in frequency domain

The mathematical model of the coupled machine-soil-foundation presented above is split in two distinct parts:

• machine or rotor system, represented by mass [M], damping [C] and stiffness [K] matrices of the shaft, disc and
bearings elements together with any elements (ex. plates, beams or rods) representing the machine structure. In the
rotor system one can also include possible stiffness and damping effects of the oil film in the journal bearings. One
can also included stiffening effects on the shaft due to the presence of axial or shear forces (Lalanne, 1990).

• auxiliary or supporting system, represented by the soil-foundation impedance matrix [S(ω)] also called complex
stiffness matrix which is obtained directly in frequency domain.

Figure 1: decomposition of the original coupled system into machine and support sub-systems
 (B = bearings, D = discs, SH = shaft elements)

One can define the displacement vector {x(t)} containing the degrees of freedom of the rotor system. The vector
{xB(t)} contains a partion of {x(t)} with all the DOF´s of the connecting nodes lying on the machine-foundation
interface and {xS(t)} contains the remaining nodes of {x(t)}.  Therefore the rotor equation of motion can be represented
as (Lalanne, 1990):
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The term {F (t)} represents the vector of external generalised forces and the partition {FS(t)} contains all the forces
acting on the rotor system. The partition {FB(t)} represents the interaction forces between the machine structure and the
supporting system. In the case of the rotor system, [M], [C] and [K] are obtained via summation of each finite element
matrix corresponding to the shaft, disk and bearing elements of the rotor plus any DOF representing the machine
structure following the procedures of structural analysis. Partitioning of mass, damping and stiffness matrices of the
rotor system results:
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where the B-index indicates those nodes of the structure lying on the machine-foundation interface and the S-index
indicates all the remaining nodes in the rotor system.  The Fourier transform of equation (2) gives
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where [S]ab for a,b = S,B represents a partition of the rotor impedance matrix, given by:
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and {XS} e {XB} represent displacement amplitudes in the rotor system. The interaction forces arising between the
machine and the supporting systems are calculated as follows:
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where G
B}X{  represents the displacement amplitudes of the interface nodes which are calculated without the machine

influence and [ ]G
BBS  is the  impedance matrix of the supporting system. In cases where external forces exist only on the

rotor (such as mass unbalance), the term G
B}X{  vanishes and the equation of motion of the coupled system is simplified

as:
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The soil-foundation impedance matrix [ ]G
BBS  is obtained using the concept of flexibility matrix as given as follows.

2.1 Impedance matrix of the supporting system

The equation of motion of the supporting system is obtained through direct inversion of the flexibility matrix for a
foundation-soil group excited by an harmonic force for each frequency step. The foundation can be treated as flexible or
rigid since there are no differences in the formulation. The equation of motion in frequency domain for the supporting
system is:

[ ] { } { }BBBB XF )(N =ω (7)

where [N(ω)] represents the flexibility matrix for each structural DOF on the interface between the machine and the
supporting system. The soil-foundation impedance matrix is:

[ ] [ ] 1
BB

G
BB NS −= . (8)

In order to consider the soil dissipative effects on the rotor behaviour, only the case of a rigid foundation will be
considered here. In this case the supporting system has only three DOF´s which are related to the foundation rigid body
modes in the plane of figure 2.

Figure 2: supporting system  of a flexible foundation

Neglecting axial forces on the rotor system and considering a flexurally rigid foundation, the equation of motion (7)
is given by (Romanini, 1995):
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where displacements w, u and ϕ are the foundation DOF´s. Neglecting the machine structure flexibility in the plane of
figure 2 and considering the forces FZ and FX  acting directly on the rotor axis, equation (9) can be changed as:
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where a and c are, respectively, foundation half-bandwidth and distance from rotation axis to the foundation-machine
interface. One can see from equation (10) that there is no dynamic coupling between displacement in vertical direction
and the other two. Hence, the supporting impedance matrix [ ]G

BBS  is given by:
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where k*
ij(ω) are complex-valued dynamic stiffness coefficients.

Figure 3: modelling of a rigid foundation for machine supporting

Considering small displacements in a way that sen(ϕ) ≈ ϕ and neglecting torcional vibrations due to the rotor-shaft
movement, rocking moment M is given simply by c.Fx and, therefore, the supporting system behaviour can be described
using only translation DOF´s w and u available on the rotor bearings. Therefore:
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where equivalent stiffness kwz and kux are given by:
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The base rocking displacement ϕ is, therefore:
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2.2 Methods for obtaining flexibility coefficients for soil-foundation system

An important aspect in obtaining flexibility functions for the supporting system that must be considered is the
correct simulation of the geometric damping through one-directional wave propagation away from the rotating
machinery. The finite element method is a domain discretization method and cannot simulate the radiation condition
because Dirichlet's or Neumann's boundary conditions (or a linear combination of both) must be applied to the FEM
mesh for the problem solution (Zienkiewicz, 1989). In addition to that, the FEM mesh must be truncated at some point
away from the source to limit the number of DOF´s in the solution. This mesh truncation imposes an artificial reflecting
boundary where conditions have to be applied for the sake of uniqueness of solution. This boundary, when posed close
to the source, causes wave reflection toward the source and violation of the radiation condition (Barros, 1996). Some
alternatives like absorbing boundaries (essentially the usage of calibrated dampers on the boundary) didn't  work well
and were abandoned shortly after their proposition. In this paper three alternatives for obtaining the foundation-soil
impedance matrix, namely the hybrid finite/infinite element method, the boundary element method and the simplified
cone model method will be investigated.

2.2.1 Cone Models

Cone models, as described by Wolf (1985), present a simple and efficient method for obtaining some half- or
layered-space flexibility functions. However, since they ignore large portion of the half space very close to the machine,
such models does not permit simulation of Rayleigh (or surface) wave propagation which carries more than half of the
vibration energy as seen in half-space models. Therefore, such models underestimate the soil damping capacity,
particularly in the case of buried foundation or piles.

For the case of vertical flexibility function Nwz(ω), the exponential cone model permits some results that indeed
allow modal techniques to be applied in the coupled soil-foundation-machine system. For a cone with exponentially
increasing transversal area, the vertical flexibility function for rigid foundation is:
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where E is the soil stiffness, A0 is the soil-foundation contact area and f is a parameter that defines how fast the cone
transversal area grows. In practice, parameter f is chosen in a way that Nwz  calculated using equation (15) is a good
approximation of Nwz calculated using BEM or hybrid FEM models.

Figure 4: model of exponential cone for Nwz(ω)

In equation (15), the term a0 is referred as "non-dimensional frequency' , cp is the propagation speed of body waves,
defined as cp = (E/ρ)1/2, and  ρ is the medium density. Figure 5 illustrates the behaviour of the real and imaginary parts
of kwz(ω) when f = 1.10, E = 1.25x107 N/m2 m, ρ = 3800 kg/m3  and A0= 0.50 m2 .
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Figure 5: behaviour of kwz(ω) for a exponential cone model

An important fact of cone models usage is that, excluding the low-frequency band, the dynamic behaviour of this
model can be translated into a simple 1 DOF spring-dashpot model and, therefore, be readily incorporated into available
codes of rotordynamics. For the model described above, one can have soil parameters which are frequency-independent
and given by  kwz  = 11.36x106 N/m and cwz = 4.57x103 N.s/m which cannot be neglected in a realistic dynamic
analysis.

2.2.2 Boundary element methods

The direct version of BEM (Romanini, 1995) is an alternative for obtaining soil-foundation impedance matrices
since  the so-called fundamental solutions (usually Green's functions of full-space) automatically fulfil the radiation
condition. Besides, when specially-defined Green's functions are employed, only the interface between soil and
foundation (rigid or flexible) need discretization and, consequently, very few DOF´s are required as compared to FEM
solutions. The main disadvantage of the BEM is that fundamental solutions employed in the method have to be
formulated directly in the frequency domain, allowing identification of an approximate modal base only via parameter
identification techniques of the rotor's FRFs (when the system is solved in the frequency domain directly).

2.2.3 Infinite elements

The usage of hybrid models of finite/infinite elements has been proved to be very efficient in the numerical
evaluation of soil-foundation dynamic matrices (Barros, 1996). In fact, since 1998, commercial packages like
ABAQUS or ANSYS have infinite elements in their element library. The modelling technique consists of using
higher-order (quadratic or cubic) finite elements to model the region close to the foundation (known as near field ) and
using exponential decrease or mapped infinite elements to model the region away from the foundation (known as far
field) .

Figure 6: Modelling technique of a homogeneous half-space by a hybrid finite/infinite element mesh
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This technique allows the modelling of any geometric irregularity (as buried foundation or layered soils) in the near
field very easily due to the versatility of the current mesh generator programs. Medina (1982) recommended a near field
distance of no less than three times the foundation half-bandwidth a for a precise modelling of the stress gradients near
the soil-foundation interface. However this technique results in a large number of DOF´s (typically 3000 or 4000 DOF)
only for obtaining the support dynamic response, which has to be solved for each frequency step. Barros (1996)
obtained impedance matrices for a rigid foundation resting on a surface of a viscoelastic isotropic half-space by
stiffening the foundation elasticity modulus at least 20 times more than the soil's.

The figures 7 and 8 illustrates the behaviour of the impedance matrix coefficients Nux(ω) and Num(ω) for a half-
space with ν=0.25 and hysteretic damping factor of 10% obtained through the technique described above and a
comparison with the BEM results obtained by Romanini (1995) and some Luco and Westman (1972) analytical results .

Figure 7: Flexibility function Nux(ω) for η=0.10 and ν=0.25 .

     

Figure 8: Flexibility function Num(ω) = Nϕx(ω) for η=0.10 and ν=0.25.

One can realise a good agreement between the analytical results and the numerical FEM and BEM simulations
mainly in the high frequency band, for a0 ≥ 1.00.

2.3. Numerical Implementation: FRF´s of an asymmetric rotor supported by a viscoelastic half-space

In order to determine the influence of the soil dissipative parameters on the dynamic behaviour of rotating
machinery, the flexibility functions described above were used together with the motion equations of rotordynamics to
determine some FRF curves of an asymmetric rotor supported by a viscoelastic half-space. A comparison illustrating
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the influence of the foundation mass in the results was also obtained. Figure 9 illustrates the geometry of the present
problem.

Figure 9: Geometry of the rotating machinery

The simulation was carried out considering the shaft sections modelled by FEM as beam elements and neglecting
the effect of transverse shear on shaft stiffening. The discs were modelled considering only their inertial effect upon
matrices [M] and [C] and also neglecting possible stiffening effects on the shaft sections.  Foundation mass (mf ) was
equally split between the two supports and modelled as concentrated mass points. No foundation rotational inertia was
modelled.  Dynamic coupling between orthogonal directions in the bearings elements was also neglected, so kxz = kzx= 0
and cxz = czx = 0 for these elements. Table 1 summarises the physical properties of each element.

Table 1: physical properties of the several elements used in the model

bearings Kxx = Kzz = 1.0x109 N/m , Kxz = Kzx = 0
Cxx = Czz = 5.0x102 N.s/m , Cxz = Czx = 0

disks md= 0.5 kg,
Ix = Iz = 0.0029kgm2 e Iy=0.056 kgm2

shafts E = 2.09x1011 N/m2
I = 7887 mm4

ρ = 7920 kg/m3 , mshaft = 1.38 kg
lateral supports plus

bearing (each)
m = 3.5 kg

total rotating machine
mass including structure

mtotal = 9.98 kg

The system was excited by an unbalancing force corresponding to 0.1 kgm on disc 1. To demonstrate the influence
of the foundation mass on the displacements, the soil impedance matrix [ ]G

BBS  was calculated via finite/infinite
modelling considering three distinct mass relations of mf /mtotal = 0, mf /mtotal = 10 and  mf /mtotal = 1000 were mtotal is
the approximate machine mass. The results shown in Figure 10 refers to the displacement of the left support. As
expected, foundation mass plays a major role in obtaining the dynamic response of high-speed rotating machinery.

To demonstrate the influence of the modelling technique, Figure 11 shows the same system response but now
considering the three alternatives of modelling of the supports: rigid base, finite/infinite method and cone model for a
foundation mass of 100 kg that corresponds to mf /mtotal ≈ 10. Results demonstrate that the modelling technique is also
important when considering the response of rotating machinery but there is no appreciable difference between the
results obtained via MEF and via cone models. This suggests that an economical analysis can be performed simply by
considering an equivalent spring-dashpot model for soil attenuation.
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Figure 10: Influence of the foundation mass in dynamic response
of rotating machinery

Figure 11: Influence of the modelling technique

2.4. Conclusions

In this paper several topics concerning the modelling of the radiation condition in rotating systems were addressed.
A substructuring technique that permits the foundation-soil impedance matrix to be coupled with the rotor equations of
motions were presented. The more important techniques for the modelling of the radiation condition, namely simplified
cone models, finite/infinite elements and boundary elements were also discussed.

Results of the simplified, lumped parameters, model implemented here gives indication that both foundation mass
and modelling technique are very important for the numerical simulation of vibration in rotating machinery. Also, that
the simplified cone models appears to be an economical alternative for the foundation simulation if the flexural rigidity
of the foundation does not include elastic foundation models in the frequency range being analysed.

The methodology presented here can be extended, with very little modifications, for the analysis of the dynamics of
grounded structures subjected to non-cyclic loadings through spectral decomposition directly in time domain.
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