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Abstract. In previous work, a method for establishing the equations ofmotion of open-loop multibody mechanisms was
introduced. The proposed forward dynamics formulation resulted in a Hamiltonian set of2n first order ODE’s in the
generalized coordinatesq and the canonical momentap. These Hamiltonian equations were derived from a recursive
Newton-Euler formulation. It was shown how anO(n) formulation could be obtained in the case of a serial structure
with general joints. The amount of required arithmetical operations was considerably less than comparable acceleration
based formulations. In this paper, a further step is taken: the method is extended to constrained multibody systems. Using
the principle of virtual power, it is possible to obtain a recursive Hamiltonian formulation for closed-loop mechanisms
as well, enabling the combination of the low amount of arithmetical operations and a better evolution of the constraints
violation errors, when compared with acceleration based methods.
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1 Introduction

One could state that multibody dynamics research is focusedon two major challenges nowadays. The first challenge
is the increase of simulation speed by calculating the equations of motion in a more efficient way or by creating better
numerical integrators. The second challenge is about the efficient incorporation of events in the simulation: contacts,
impacts, changing topology, user interaction... These events require a high flexibility of the simulator and can use a great
amount of computer processing time, certainly in the case ofcontact detection for a high number of bodies or bodies with
a complex structure. This paper is a contribution to the firstchallenge. There exist many ways to treat the equations of
motion, but the recursive formulations have proven to be very efficient for large numbers of bodies (Featherstone, 1987).
Whether the Newton-Euler equations, the Lagrangian equations or the principle of virtual work or virtual power are used,
second order differential equations are obtained and the algorithms come down to calculating and integrating accelerations
(Jerkovsky, 1978; Kane and Levinson, 1985; Featherstone, 1987; Haug, 1989; Rosenthal, 1990; Rein, 1993; Vukobratović
et al., 1994; Baraff, 1996).

Another important aspect is the set of coordinates that describes the system, because it does have strong repercussions
on the numerical integration. Expressing the equations of motion in a minimal set of coordinates results in less differential
equations, which are however more coupled and usually exhibit stronger non-linearities (de Jalón and Bayo, 1994), com-
pared to the non-minimal formulations. The advantage is that no constraint equations are required and a set of ordinary
differential equations (ODE) must be solved. Non-minimal formulations on the other hand, result in mixed differential
algebraic equations(DAE), but are in general much easier toestablish.

Instead of manipulating the number of coordinates, one can also change the nature of the coordinates. Acceleration
based formulations require starting values for the generalized coordinates and the velocities. In that sense, one can also
think of these equations as first order differential equations in the generalized coordinates and the velocities. An interesting
alternative are Hamilton’s equations, which are expressedin terms of the generalized coordinates and theirconjugated
canonical momenta. Promising, because these equations behave better during numerical integration, resulting in more
accuracy and stability (Brenan et al., 1989; Baumgarte, 1983). Despite that fact, the Hamiltonian formulation is not often
encountered in multibody dynamics literature. The reason for the lack of interest is probably that the construction of
Hamilton’s equations is computationally intensive and cannot compete with the recursive acceleration based algorithms,



even with the advantageous behavior during the numerical integration. A few researchers (Lankarani and Nikravesh,
1988; Bayo and Avello, 1994) devoted time to the use of the Hamiltonian equations in multibody systems dynamics and
obtained very positive results.

In previous work (Naudet et al., 2003b), an additional step to promote the use of canonical momenta was taken,
by introducing a newrecursivemethod to establish Hamilton’s equations for open-loop (rigid) multibody systems. The
presented algorithm did not only provide an HamiltonianO(n) equivalent for the acceleration based methods, but even
exceeded their performance at the level of number of required arithmetical operations.

The problem of obtaining the equations of motion becomes more involved when additional constraints are applied
on the system, as is the case with closed-loop systems (Stejskal and Vaĺǎsek, 1996; Anderson and Critchley, 2003). The
strong interdependency of the coordinates and their velocities makes it difficult to tailor aO(n) recursive algorithm,
certainly to obtain Hamiltonian equations. It is however possible, and that will be shown in this article.

The paper is further divided in two parts. In the first part, the basic formalism of the method is introduced (sections
2 and 3) and the algorithm for open-loop systems (section 4) is briefly reviewed. The second part tackles the problem of
additional constraints (sections 5, 6 and 7).

2 Newton-Euler in relative axes

The classical formulation of the Newton-Euler equations for a single rigid body is given by (Goldstein, 1950)

m
d0vG

dt
= f + fr (1a)

JG

dK
ω

dt
+ ω × JGω = tG + trG

(1b)

The first equation is typically written in an inertial reference frame (notationd
0

dt
), while the second is formulated in a

frameK fixed to the body (d
K

dt
). The force and the torque that act on the object are represented byf andt, thereaction

forces and torques byfr andtr. The matrixJ is the inertia tensor,m is the mass of the body,ω is the angular velocity
referred to the inertial axes andvG the linear velocity of the center of mass (see figure 1). The indexG denotes that the
momenta and the tensor of inertia are taken with respect to the center of mass.

(a) Kinematics (b) Dynamics

Figure 1: Notation on a single rigid body

The6-dimensional momentumvectorwill be needed, it is defined as follows:

P =

(
pl

pa

)
=

(
mI mG̃O

mÕG J

)(
v

ω

)

K

= MΩ (2)

Inspection ofP reveals that it is nothing more than a concatenation of the linear (pl) and angular (pa) momenta of the
rigid body. I is a unity matrix,v the linear velocity of the originO of the local reference frame. This origin must lie
on the rotational joint axes, if present.J is the tensor of inertia referred to pointO. M is called the mass matrix.̃x is a
skew-symmetric matrix constructed from the vectorx and is an alternative notation for the cross product.

x × a = x̃ a =




0 −x3 x2

x3 0 −x1

−x2 x1 0






a1

a2

a3


 (3)

Ω is the spatial velocity vector. It can be written as a function of the coordinate velocities (scleronomic constraints):



Ω = Eq̇ (4)

We callE the joint matrix. The column vectors of the joint matrix forma basis for the space of virtual motions and are
hence orthogonal to the space of the generalized reaction forces. They are the partial derivatives of the spatial velocity
vector to the generalized coordinates. The coordinate velocities vectorq̇ has dimensionn, which is the number of degrees
of freedom of the body. The joint matrix therefore has dimensions6 × n.
The Newton-Euler equations (1) can be reformulated in relative axes, and written with respect to the originO. Note that
the relation between the time derivatives in two different framesK andL is given by

dLx

dt
=

dKx

dt
+ ωr × x (5)

ωr being the relative angular velocity of frameK with respect to frameL.
Furthermore, the momentum vector (2) can be introduced in the equations. After some mathematical manipulations, and
observing thatpl = mvG, equations (1) can be reformulated as:

(
ṗl

ṗa

)
+

(
ω̃ 0

ṽ ω̃

)(
pl

pa

)
=

(
f

t

)
+

(
fr
tr

)
(6)

By convention, all momenta are taken with respect to the origin O of the local reference frame.̇x stands for the time
derivative inlocal axes, e.g.ω̇K = dK

ωK

dt
. This implies thatṀK = 0.

We will go further in the conciseness of the equations, by defining a6-dimensional cross product as follows:

Ω× =

(
v

ω

)
× ,

(
ω̃ 0

ṽ ω̃

)
(7)

The equations of motion for a single rigid body then become

Ṗ + Ω × P = T + Tr (8)

with T =
(
fT tT

)T

, Tr =
(
fT
r tT

r

)T

.

3 Hamiltonian equations

Introducing the Hamiltonian equations requires a brief description of the Lagrange equations. These are given by
(Goldstein, 1950; Pars, 1965; de Jalón and Bayo, 1994):

d

dt
(
∂L

∂q̇
) −

∂L

∂q
+ ΦT

q λ = Q (9a)

Φ(q, t) = 0 (9b)

This is a set of differential algebraic equations (DAE). Thedifferential equations are of order2. Φ are the constraints
equations. The Lagrange equations are described by the set(q, q̇), which are the coordinates and their velocities. Us-
ing the so-called Legendre transformation, it is possible to transform this set of coordinates into the sameq and their
conjugatedcanonical momentap, which are defined as:

p =
∂L

∂q̇
(10)

They are an extension of the concept of linear and angular momenta to generalized coordinates. Applying the Legendre
transformation results in

q̇ =
∂H

∂p
(11a)

ṗ = −
∂H

∂q
+ Q − ΦT

qλ (11b)

Φ(q, t) = 0 (11c)

Referring to the alternative formulation of the Newton-Euler equations, it can easily be shown that the kinetic energy
T of a single rigid body can be expressed as:

T =
1

2
ΩT MΩ =

1

2
ΩT P (12)



Calculating the canonical momenta with (10) yields

p =
∂L

∂q̇
=

∂T

∂q̇
=

∂ΩT

∂q̇
MΩ = ET MΩ = ET P (13)

The canonical momentap conjugated to the generalized coordinatesq are thus the projections of the momentum vector
P on the joint axes.

4 Equations of motion for open-loop multibody systems

In this section, a short overview of the algorithm for open-loop multibody systems will be given. For a detailed
derivation and description, take a look at (Lefeber et al., 2002; Naudet et al., 2003a; Naudet et al., 2003b).

4.1 Force and velocity transformations

By convention, the reactions (torques) from bodyN are taken with respect to pointON on the joint axis. To transmit
these reactions to originOK of bodyK, the transformation matrixKT F

N
is used:

KT F

N
=

(
I 0

ÕKON I

)
(14)

Note that this matrix is constant in the local reference frame. Observe also that the velocities transform in a similar way:

ΩN = NT V

K
ΩK + EN q̇N =

(
I ÕNOK

0 I

)(
vK

ωK

)
+ EN q̇N (15)

The relationship between both transformation matrices is given by:

KT F

N
= (NT V

K
)T (16)

4.2 Articulated momentum vector

The articulated momentum vectorP∗ of a rigid bodyK in a multibody system is defined as the sum of the momentum
vector of that body and the reduced momentum vectors ofall its outboardbodies. This is equivalent to freezing all
outboard links of the considered body and calculating the momentum vector of the obtainedarticulatedstructure. The
articulated momentum vectors can be derived with a backwardrecursion:

P∗

K
= PK +

∑

i

KT F
i

Pi i ∈ {outboard bodies} (17)

P∗

K
= PK +

∑

j

KT F
j

P∗

j
j ∈ {adjacent outboard bodies} (18)

It can also be expressed as:
P∗

K = M∗

KΩK + DK (19)

with the so called articulated mass matrixM∗ and the remainder momentum vectorD. These quantities can be obtained
in a backward recursion step.

M∗

K
=MK +

∑

j

KT F

j
M′

j

jT V

K
(20)

DK =
∑

j

KT F

j
D′

j
j ∈ {adjacent outboard bodies} (21)

M′

K
=M∗

K
− M∗

K
EKM−1

jK
ET

KM∗

K
(22)

MjK
=ET

KM∗

K
EK (23)

D′

K
=M∗

K
EKM−1

jK
(pK − dK) + DK (24)

4.3 Canonical momenta

It can straightforwardly be proved that the projection of the articulated momentum vector on the subspace of virtual
motion of a certain joint results in a set of canonical momenta conjugated to the coordinates describing that motion.

pK =
∂L

∂q̇K

=

N∑

i=K

∂ΩT
i

q̇K

Pi = ET
K

N∑

i=K

KT F

i Pi = ET
KP∗

K (25)



4.4 Equations of motion

Using the equations of motion (8) for a single rigid body and the concept of articulated momentum vector, the equa-
tions of motion for each body of a MBS can be obtained:

Ṗ∗

K + ΩK × P∗

K = T∗

K + TrK
(26)

The unknown reaction forces can be eliminated by projectionon the subspaceEK (taking for concisenesṡEK = 0):

ṗK = ET
K(T∗

K − ΩK × P∗

K) (27)

The coordinate velocities can be found using (19) in a forward recursion step:

q̇K = M−1

jK
ET

K [(PK − DK) − M∗

K

KT V

K−1
ΩK−1] (28)

5 Equations of motion for constrained MBS

The principle of the method for obtaining the recursive Hamiltonian equations for a constrained MBS will be shown
through an example, as a general description would be too long and tedious. The considered example is a chain of bodies
interconnected by pin-joints, the base body1 being connected to a fixed inertial frame0. A closed loop is created by
connecting the last elementN of the chain to the fixed inertial frameC. The number of linksN is arbitrary, but must be
more than two.

Figure 2: Example of a constrained MBS

5.1 Principle of virtual power

The principle of virtual power states that reaction forces acting on a mechanical system do not deliver any power under
avirtual motion (Goldstein, 1950). It can be expressed under following form:

∑

i

[Ω∗T
i (Ṗi + Ωi × Pi − Ti)] = 0, (29)

Ω∗ being thevirtual spatial velocities. These equations can be written as functions of thevirtual coordinate velocitieṡq∗

by using (15):

N∑

i=1

Aiq̇
∗

i = 0 (30)

These equations must be fulfilled for every set of allowed virtual coordinate velocities. For unconstrained systems, this
means the coefficientsA can all be set to zero, leading toN first order differential equationsAi = 0. In the case of



constrained systems withDOF degrees of freedom, a partition can be made in dependent and independent coordinates.
Expressing the dependent virtual coordinate velocities asfunctions of the independent ones gives:

∑

i

Biq̇
∗

i = 0 i ∈ {independent bodies} (31)

The coefficientsB can now be set to zero andDOF first order differential equations are obtained.

5.2 Jacobian of the constraint equations

The relation between dependent and independent coordinates is given implicitly by the constraint equations:

Φ(q) = 0 (32)

Dealing with these equations directly is not an easy task, this is why their time-derivatives are often taken, leading toa
relationship between the coordinatevelocities.

Φqq̇ = −
∂Φ

∂t
(33)

Φq is the Jacobian matrix of the constraint equations. After partitioning in dependentqd and independentqi coordinates,
one gets:

Φqd
q̇d + Φqi

q̇i = −
∂Φ

∂t
(34)

q̇d = −Φ−1
qd

(Φqi
q̇i +

∂Φ

∂t
), (35)

which gives the relationship between the dependent and the independent coordinate velocities. Needless to say that an
incorrect partitioning will lead to singularity or at leastbad conditioning ofΦqd

.
Using the Jacobian matrix to obtain equations (31) results in expressions for the coefficientsB which are of ordern2

and which introduce a high coupling of the equations of motion. It is therefor unsuitable for the goal to achieve a recursive
O(n) method.

5.3 Dependent spatial velocities

Instead of using the Jacobian in an explicit way, one can describe the spatial velocity of adependent body(which joint
coordinates are chosen as dependent ones) as a function of the spatial velocity of the adjacent inboard body (Anderson
and Critchley, 2003). As will be shown, this leads naturallyto an expression for the canonical momenta and to anO(n)
method to obtain the Hamiltonian equations of motion.

The example on fig.2 hasN − 2 degrees of freedom. Closing the loop by connectingN to C introduces2 constraints
and one extra joint, which will be described by joint coordinateqC . As a consequence, there are3 dependent coordinates
which will be chosen asqN−1, qN andqC . BodyC is fixed, its spatial velocity is therefor zero:

ΩC = CT V
N ΩN + EC q̇C = 0 (36)

After projection on subspaceEC , an expression for joint velocityC is obtained:

q̇C = −(ET
CEC)−1ET

C
CT V

N ΩN (37)

= CT
qC

CT V
N ΩN (38)

Substitution in (36) results in

CC
CT V

N ΩN = 0 (39)

with
CC = I + ECCT

qC
(40)

This procedure can be repeated recursively for all dependent coordinates. For the next bodyN , one gets (premultiplying
by ET

N
NT F

C this time)

q̇N = −(ET
N

NT F
C CC

CT V
N EN )−1(ET

N
NT F

C CC
CT V

N )NT V
N−1ΩN−1

= CT
qN

NT V
N−1ΩN−1 (41)

Note that matrix (ET
N

NT F
C CC

CT V
N EN ) needs to be regular. Singularity would be the consequence of a bad partitioning

in independent and dependent coordinates. After substitution in (15), one gets

ΩN = CN
NT V

N−1ΩN−1 (42)



with
CN = I + ENCT

qN
(43)

There is one more dependent coordinate to find. Substitutionof (42) in (39) and premultiplying byNT F
C results in

C∗

N
NT V

N−1ΩN−1 = 0 (44)

with

C∗

N = NT F
C CC

CT V
N CN (45)

= ΛNCN (46)

which is a symmetrical matrix. Further calculations yield:

q̇N−1 = CT
qN−1

N−1T V
N−2ΩN−2 (47)

ΩN−1 = CN−1
N−1T V

N−2ΩN−2 (48)

with

CT
qN−1

= −(ET
N−1

N−1T F
N C∗

N
NT V

N−1EN−1)
−1(ET

N−1
N−1T F

N C∗

N
NT V

N−1) (49)

CN−1 = I + EN−1C
T
qN−1

(50)

The constraints matricesC∗ andCT
q are found through a backward recursion step, the joint and spatial velocities through

a forward recursion step.
Note thatCC = C, this means it is a projection operator. Note also thatCE = 0.

5.4 Canonical momenta

The canonical momenta of a constrained multibody system areonly defined for the independent coordinates. There
are in this case thusN − 2 canonical momenta, which can be found with:

pK =
∂T

∂q̇K

=

N∑

i=1

∂ΩT
i

∂q̇K

Pi =
∑

i=ind

∂ΩT
i

∂q̇K

Pi +
∑

i=dep

∂ΩT
i

∂q̇K

Pi K ∈ {independent bodies} (51)

Using (15), (42) and (48) yields

pK = ET
KPc

K (52)

with the so called constrained momentum vector

Pc
K = PK +

∑

j

KT F
j CT

j Pc
j j ∈ {adjacent outboard bodies} (53)

CT
j is set to unity for independent bodies.

5.5 Equations of motion

The equations of motion of the constrained MBS will be found using the principle of virtual power. To obtain a
suitable expression (31), one needs to write the virtual spatial velocities explicitly as functions of the independentvirtual
joint velocities. When going from the tipC to the base0, the first encountered independent coordinate isqN−2. Following
spatial velocities are dependent onq̇N−2:

ΩN−2=
N−2T V

N−3ΩN−3 + EN−2q̇N−2 (54)

ΩN−1=CN−1
N−1T V

N−2ΩN−2 (55)

ΩN =CN
NT V

N−1ΩN−1 (56)

Substitution in the principle of virtual power leads to following expression for coefficientBN−2:



BN−2 = ET
N−2(ṖN−2 + ΩN−2 × PN−2 − TN−2) (57)

+ ET
N−2

N−2T F
N−1C

T
N−1(ṖN−1 + ΩN−1 × PN−1 − TN−1) (58)

+ ET
N−2

N−2T F
N−1C

T
N−1

N−1T F
N CT

N (ṖN + ΩN × PN − TN ) = 0 (59)

After the introduction of the constrained momentum vector (53), some tedious manipulations and a lot of perseverance, it
can be proved that following equality holds:

ṖN−1 + ΩN−1 × PN−1 − TN−1 + N−1T F
N CT

N (ṖN + ΩN × PN − TN ) (60)

= Ṗc
N−1 + ΩN−1 × Pc

N−1 − Tc
N−1 (61)

with

Tc
N−1 = TN−1 + N−1T F

N CT
NTN + N−1T F

N [ĊT
N + (ΩN × I)CT

N − CT
N (ΩN × I)]PN (62)

A comparable reduction can be made from bodyN − 1 to bodyN − 2, ultimately resulting in the concise and familiar
form

ṗN−2 = ET
N−2(T

c
N−2 − ΩN−2 × Pc

N−2) (63)

with

Tc
N−2 = TN−2 + N−2T F

N−1C
T
N−1T

c
N−1 + N−2T F

N−1[Ċ
T
N−1 + (ΩN−1 × I)CT

N−1 − CT
N−1(ΩN−1 × I)]Pc

N−1 (64)

All the other bodiesK can be handled as for in open-loop systems:

ṗK = ET
K(Tc

K − ΩK × Pc
K) (65)

Tc
K = TK + KT F

K+1T
c
K+1 (66)

Tc
i should of course be calculated in a second backward recursion, as it is dependent on the spatial velocities, which are

calculated in the forward recursion step. This extra recursion step is often needed when the forces are velocity dependent
anyway.

6 Coordinate velocities

The independent coordinate velocities are needed to obtainthe remaining Hamiltonian equations. The dependent co-
ordinate velocitieṡqN−1, q̇N andq̇C where already calculated in section 5.3. To find joint velocity q̇N−2, the projection
of the constrained momentum vector on the joint axis is needed.

pN−2 = ET
N−2P

c
N−2 = ET

N−2(PN−2 + N−2T F
N−1C

T
N−1P

c
N−1) (67)

Each term needs to be expressed as a function ofΩN−2. For bodyN − 1, one obtains:

Pc
N−1 = PN−1 + N−1T F

N−1C
T
NPN (68)

= (MN−1 + N−1T F
N CT

NMNCN
NT V

N−1)ΩN−1 (69)

= Mc
N−1ΩN−1 = Mc

N−1CN−1
N−1T V

N−2ΩN−2 (70)

Mc
N−1 = MN−1 + N−1T F

N CT
NMNCN

NT V
N−1 (71)

Mc
N−1 being the constrained mass matrix. For bodyN − 2, one subsequently gets:

Pc
N−2 = [MN−2 + N−2T F

N−1C
T
N−1M

c
N−1CN−1

N−1T V
N−2]ΩN−2 (72)

= Mc
N−2ΩN−2 (73)

Mc
N−2 = MN−2 + N−2T F

N−1C
T
N−1M

c
N−1CN−1

N−1T V
N−2 (74)

The joint velocityq̇N−2 can easily be derived from above equations:

pN−2 = ET
N−2P

c
N−2 = ET

N−2M
c
N−2(

N−2T V
N−3ΩN−3 + EN−2q̇N−2) (75)

q̇N−2 = (ET
N−2M

c
N−2EN−2)

−1(pN−2 − ET
N−2M

c
N−2

N−2T V
N−3ΩN−3)

= Mc−1

jN−2
[pN−2 − ET

N−2M
c
N−2

N−2T V
N−3ΩN−3] (76)



To obtain the joint velocity for bodyN − 3, one can substitute above equation in the expression for theconstrained
momentum vector.

Pc
N−2 = Mc

N−2(
N−2T V

N−3ΩN−3 + EN−2q̇N−2) (77)

= Mc
N−2[

N−2T V
N−3ΩN−3 + EN−2M

c−1

jN−2
(pN−2 − ET

N−2M
c
N−2

N−2T V
N−3ΩN−3)] (78)

= M
′

N−2
N−2T V

N−3ΩN−3 + D
′

N−2 (79)

M
′

N−2 = Mc
N−2 − Mc

N−2EN−2M
c−1

jN−2
ET

N−2M
c
N−2 (80)

D
′

N−2 = Mc
N−2EN−2M

c−1

jN−2
pN−2 (81)

Repeating previous procedure gives:

Pc
N−3 = PN−3 + N−3T F

N−2P
c
N−2 (82)

= (MN−3 + N−3T F
N−2M

′

N−2
N−2T V

N−3)ΩN−3 + N−3T F
N−2D

′

N−2 (83)

= Mc
N−3ΩN−3 + DN−3 (84)

Mc
N−3 = MN−3 + N−3T F

N−2M
′

N−2
N−2T V

N−3 (85)

DN−3 = N−3T F
N−2D

′

N−2 (86)

The joint velocity is then:

pN−3 = ET
N−3P

c
N−3 = ET

N−3M
c
N−3(

N−3T V
N−4ΩN−4 + EN−3q̇N−3) + ET

N−3DN−3 (87)

q̇N−3 = (ET
N−3M

c
N−3EN−3)

−1(pN−3 − ET
N−3DN−3 − ET

N−3M
c
N−3

N−3T V
N−4ΩN−4)

= Mc−1

jN−3
(pN−3 − dN−3 − ET

N−3M
c
N−3

N−3T V
N−4ΩN−4) (88)

All the other joint velocities can be found just like for open-loop systems (see section 4).

7 Summary of the algorithm

Before calculating the Hamiltonian equations of motion, a partition must be made in dependent and independent
coordinates. This should be done carefully, considering singularity conditions. The actual algorithm is divided in3
recursion steps. In a first, backward recursion step, the constraint matricesC, the constrained mass matricesMc and the
remainder momentum vectorsD are computed. In the following, forward recursion step, allcoordinate velocitieṡq and
all spatial velocity vectorsΩ are calculated. In a last, backward recursion step, the accumulated force vectorsTc are
obtained, from which the time derivatives of the canonical momentaṗ can be found.

8 Conclusions

In this paper, it was shown through a simple example how anO(n) recursive Hamiltonian algorithm can be obtained
for a constrained multibody system. The use of the Hamiltonian equations of motion has a positive influence on the
evolution of the constraint violation errors, as constraints are introduced at velocity level instead of accelerationlevel.
Additionally, the algorithm is based on its open-loop variant, which proved to be more efficient than recursive acceleration
based algorithms when comparing the number of required arithmetical operations to obtain the equations of motion.
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