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Abstract. In previous work, a method for establishing the equationsofion of open-loop multibody mechanisms was
introduced. The proposed forward dynamics formulatiorultes! in a Hamiltonian set ofn first order ODE’s in the
generalized coordinateg and the canonical momenga These Hamiltonian equations were derived from a recursive
Newton-Euler formulation. It was shown how @) formulation could be obtained in the case of a serial streetu
with general joints. The amount of required arithmeticakoations was considerably less than comparable accetamati
based formulations. In this paper, a further step is takée: rhethod is extended to constrained multibody systemsg Usi
the principle of virtual power, it is possible to obtain a tesive Hamiltonian formulation for closed-loop mechangsm
as well, enabling the combination of the low amount of arétioal operations and a better evolution of the constraints
violation errors, when compared with acceleration basethods.
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1 Introduction

One could state that multibody dynamics research is focasgdo major challenges nowadays. The first challenge
is the increase of simulation speed by calculating the @opusbf motion in a more efficient way or by creating better
numerical integrators. The second challenge is about fiwesft incorporation of events in the simulation: contacts
impacts, changing topology, user interaction... Thesateuwequire a high flexibility of the simulator and can useeagr
amount of computer processing time, certainly in the cas®iofact detection for a high number of bodies or bodies with
a complex structure. This paper is a contribution to the &instllenge. There exist many ways to treat the equations of
motion, but the recursive formulations have proven to bg efficient for large numbers of bodies (Featherstone, 1987)
Whether the Newton-Euler equations, the Lagrangian equatiothe principle of virtual work or virtual power are used,
second order differential equations are obtained and guwitims come down to calculating and integrating accétara
(Jerkovsky, 1978; Kane and Levinson, 1985; Featherst®&,; Haug, 1989; Rosenthal, 1990; Rein, 1993; Vukobratovi
et al., 1994, Baraff, 1996).

Another important aspect is the set of coordinates thatitescthe system, because it does have strong repercussions
on the numerical integration. Expressing the equationsatian in a minimal set of coordinates results in less dififitiad
equations, which are however more coupled and usually #dtfbnger non-linearities (de &ad and Bayo, 1994), com-
pared to the non-minimal formulations. The advantage isribaconstraint equations are required and a set of ordinary
differential equations (ODE) must be solved. Non-minin@ahfulations on the other hand, result in mixed differential
algebraic equations(DAE), but are in general much easiestablish.

Instead of manipulating the number of coordinates, one tsmchange the nature of the coordinates. Acceleration
based formulations require starting values for the geizecicoordinates and the velocities. In that sense, onelsan a
think of these equations as first order differential equretio the generalized coordinates and the velocities. Aamaésting
alternative are Hamilton’s equations, which are expresse¢drms of the generalized coordinates and theimjugated
canonical momentaPromising, because these equations behave better dunngrital integration, resulting in more
accuracy and stability (Brenan et al., 1989; Baumgarte3)L98espite that fact, the Hamiltonian formulation is naeof
encountered in multibody dynamics literature. The reaswritfe lack of interest is probably that the construction of
Hamilton’s equations is computationally intensive andnarcompete with the recursive acceleration based algosith



even with the advantageous behavior during the numeritedjiation. A few researchers (Lankarani and Nikravesh,
1988; Bayo and Avello, 1994) devoted time to the use of the iHanian equations in multibody systems dynamics and
obtained very positive results.

In previous work (Naudet et al., 2003b), an additional stejpromote the use of canonical momenta was taken,
by introducing a newecursivemethod to establish Hamilton’s equations for open-loogid)i multibody systems. The
presented algorithm did not only provide an Hamiltoniaf) equivalent for the acceleration based methods, but even
exceeded their performance at the level of number of reduairghmetical operations.

The problem of obtaining the equations of motion becomesenmmolved when additional constraints are applied
on the system, as is the case with closed-loop systemsK8itejsd VabSek, 1996; Anderson and Critchley, 2003). The
strong interdependency of the coordinates and their w@scimakes it difficult to tailor a@D(n) recursive algorithm,
certainly to obtain Hamiltonian equations. It is howevesgible, and that will be shown in this article.

The paper is further divided in two parts. In the first parg basic formalism of the method is introduced (sections
2 and 3) and the algorithm for open-loop systems (sectior Wjiefly reviewed. The second part tackles the problem of
additional constraints (sections 5, 6 and 7).

2 Newton-Euler in relative axes

The classical formulation of the Newton-Euler equationsafgingle rigid body is given by (Goldstein, 1950)

dOVG
=f+f, la
m—y + (1a)
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The first equation is typically written in an inertial reface frame (notatior%), while the second is formulated in a

frame K fixed to the body {%). The force and the torque that act on the object are repedéyf andt, thereaction
forces and torques bfy. andt,. The matrixJ is the inertia tensony is the mass of the body is the angular velocity
referred to the inertial axes and, the linear velocity of the center of mass (see figure 1). Thexd- denotes that the
momenta and the tensor of inertia are taken with respecetoghter of mass.

(a) Kinematics (b) Dynamics

Figure 1: Notation on a single rigid body

The6-dimensional momentumwectorwill be needed, it is defined as follows:

P <pl) _( mL mGO <V> ~ MQ @)
Pa mOG J w K
Inspection ofP reveals that it is nothing more than a concatenation of theali ;) and angular,) momenta of the
rigid body. I is a unity matrix,v the linear velocity of the origir© of the local reference frame. This origin must lie

on the rotational joint axes, if presenk.is the tensor of inertia referred to poi@t M is called the mass matrix is a
skew-symmetric matrix constructed from the vectand is an alternative notation for the cross product.

0 —r3 X2 a1
xxa=xa=| z3 0 -1 as (©)
—X9 X1 0 as

Q is the spatial velocity vector. It can be written as a funcid the coordinate velocities (scleronomic constraints):



Q=Eq (4)

We call E the joint matrix. The column vectors of the joint matrix foarbasis for the space of virtual motions and are
hence orthogonal to the space of the generalized reactioaso They are the partial derivatives of the spatial véfoci
vector to the generalized coordinates. The coordinatecitede vectorq has dimensiom, which is the number of degrees
of freedom of the body. The joint matrix therefore has din@ems6 x n.
The Newton-Euler equations (1) can be reformulated inix@atxes, and written with respect to the orign Note that
the relation between the time derivatives in two differeatdesik” and L is given by
L K

dd:‘:%"wrxx (5)
w, being the relative angular velocity of franie with respect to framé..
Furthermore, the momentum vector (2) can be introducederetjuations. After some mathematical manipulations, and
observing thap, = mv¢, equations (1) can be reformulated as:

pi @ 0\ (p\ _(f\, [t
6= &) -()+ () ©
By convention, all momenta are taken with respect to theiroiig) of the local reference framex stands for the time
derivative inlocal axes, e.gwx = d“wi This implies thatv,, = 0.

dt
We will go further in the conciseness of the equations, bynitedia6-dimensional cross product as follows:

- (1) = (% 2) ™

The equations of motion for a single rigid body then become

P+QOQxP=T+T, (8)
with T = (f7 ¢7)", T, = (£7 ¢I)".

3 Hamiltonian equations

Introducing the Hamiltonian equations requires a briefcdpion of the Lagrange equations. These are given by
(Goldstein, 1950; Pars, 1965; de@akland Bayo, 1994):

d dL. 0L
%(Fq)—a—qnubj)\:cz (9a)

B(q,t) = 0 (9b)

This is a set of differential algebraic equations (DAE). Tikerential equations are of ord@r ® are the constraints
equations. The Lagrange equations are described by the,sg), which are the coordinates and their velocities. Us-
ing the so-called Legendre transformation, it is possibl&r@ansform this set of coordinates into the sagnand their
conjugatedcanonical momentg, which are defined as:

oL
_ 9z 10
P= 54 (10)
They are an extension of the concept of linear and angularentarto generalized coordinates. Applying the Legendre
transformation results in

OH
1= — 11
9= 5p (11a)
) OH
p:—a—q+Q—‘I>z;)\ (11b)
®(q,t) =0 (11c)

Referring to the alternative formulation of the Newton-&utquations, it can easily be shown that the kinetic energy
T of a single rigid body can be expressed as:

1 1
T=-0"MQ=-0"P (12)
2 2



Calculating the canonical momenta with (10) yields

L or or
p:i:izia_ MQ = ETMQ = E'P (13)
oq 0q oq
The canonical momenta conjugated to the generalized coordinajesre thus the projections of the momentum vector
P on the joint axes.

4 Equations of motion for open-loop multibody systems

In this section, a short overview of the algorithm for opend multibody systems will be given. For a detailed
derivation and description, take a look at (Lefeber et 802 Naudet et al., 2003a; Naudet et al., 2003b).
4.1 Forceand velocity transformations

By convention, the reactions (torques) from badyare taken with respect to poiat, on the joint axis. To transmit
these reactions to origi@? . of body K, the transformation matriX7,” is used:

I 0
= —— (14)
OxOn I
Note that this matrix is constant in the local reference #afbserve also that the velocities transform in a similar:wa
Q= "TY Qe+ Exay = (1 ONOK ) (Vi) L m gy (15)
0 I W
The relationship between both transformation matrices/engoy:
TV = (TY)T (16)

4.2 Articulated momentum vector

The articulated momentum vectBr of a rigid bodyK in a multibody system is defined as the sum of the momentum
vector of that body and the reduced momentum vectoralloits outboardbodies. This is equivalent to freezing all
outboard links of the considered body and calculating thener@um vector of the obtaineatticulated structure. The
articulated momentum vectors can be derived with a backveamarsion:

P, = P.+» "I'P, ic {outhoard bodigs 17)
P, = P.+> "IPr ;e {adjacent outboard bodips (18)

J

It can also be expressed as:
Pj = Mj Qg + Dg (19)

with the so called articulated mass mathik* and the remainder momentum vecIdr These quantities can be obtained
in a backward recursion step.

M; =M, + Y T MTY (20)
j
D. =Y “I'D j € {adjacent outboard bodips (21)
i
M) =M}, - MLExM; 'ELM;, (22)
M, =EX M Eg (23)
D), =M ExM;!(px —dy) + Dy (24)

4.3 Canonical momenta

It can straightforwardly be proved that the projection & #rticulated momentum vector on the subspace of virtual
motion of a certain joint results in a set of canonical moraemnjugated to the coordinates describing that motion.

N T N
oL QY
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Pk Detxe ;{ ax K;{ i KT K (25)



4.4 Equations of motion
Using the equations of motion (8) for a single rigid body amel toncept of articulated momentum vector, the equa-
tions of motion for each body of a MBS can be obtained:
Dy + Qe x Py = Tj + Ty (26)
The unknown reaction forces can be eliminated by projeaivthe subspacE x (taking for concisenesk x = 0):

px = Ei (T} — Qx x Pj) (27)
The coordinate velocities can be found using (19) in a fodwacursion step:

i = M]_Klqu;[(PK —Dy) - ML T Q] (28)
5 Equations of motion for constrained MBS

The principle of the method for obtaining the recursive Heomian equations for a constrained MBS will be shown
through an example, as a general description would be ta@pdad tedious. The considered example is a chain of bodies
interconnected by pin-joints, the base bddpeing connected to a fixed inertial frarfie A closed loop is created by
connecting the last element of the chain to the fixed inertial fram@. The number of linksV is arbitrary, but must be
more than two.

Figure 2: Example of a constrained MBS

5.1 Principleof virtual power

The principle of virtual power states that reaction forceting on a mechanical system do not deliver any power under
avirtual motion (Goldstein, 1950). It can be expressed under foligviorm:

ST (P + 9 x Py — Ty)] =0, (29)

K3

Q* being thevirtual spatial velocities. These equations can be written asifumebf thevirtual coordinate velocitieg*
by using (15):

N
S A =0 (30)
i=1

These equations must be fulfilled for every set of allowetlaircoordinate velocities. For unconstrained systenis, th
means the coefficientA can all be set to zero, leading 9 first order differential equationd; = 0. In the case of



constrained systems withO F' degrees of freedom, a partition can be made in dependennhdedendent coordinates.
Expressing the dependent virtual coordinate velociti€saations of the independent ones gives:

> Big; =0 i € {independent bodigs (31)
The coefficientd8 can now be set to zero addO F’ first order differential equations are obtained.

5.2 Jacobian of the constraint equations

The relation between dependent and independent coordiisagézen implicitly by the constraint equations:
®(q) = 0 (32)

Dealing with these equations directly is not an easy task,ishwhy their time-derivatives are often taken, leadingto
relationship between the coordinatelocities

0P
b4 = ——
qd ot (33)
®,, is the Jacobian matrix of the constraint equations. Aftetifganing in dependent; and independenry; coordinates,

one gets:

) . 0P

Dy, 4a + Pq,qi= o (34)
. _ ) oP
qa = _i)qdl(q)qiqi + E)a (35)

which gives the relationship between the dependent anchttependent coordinate velocities. Needless to say that an
incorrect partitioning will lead to singularity or at leasd conditioning ofp,.

Using the Jacobian matrix to obtain equations (31) resalexpressions for the coefficierdBswhich are of orden?
and which introduce a high coupling of the equations of motlbis therefor unsuitable for the goal to achieve a rewersi
O(n) method.

5.3 Dependent spatial velocities

Instead of using the Jacobian in an explicit way, one canriesthe spatial velocity of dependent bodfwhich joint
coordinates are chosen as dependent ones) as a functioa gfdkial velocity of the adjacent inboard body (Anderson
and Critchley, 2003). As will be shown, this leads naturédlyn expression for the canonical momenta and t®an)
method to obtain the Hamiltonian equations of motion.

The example on fig.2 ha¥ — 2 degrees of freedom. Closing the loop by connecfintp C' introduces2 constraints
and one extra joint, which will be described by joint cooateg.. As a consequence, there &rdependent coordinates
which will be chosen ag 1, qy andqe. Body C is fixed, its spatial velocity is therefor zero:

Qc =Ty +Ecdc =0 (36)
After projection on subspadé., an expression for joint velocity' is obtained:
qc = —(BLEq)'El°Ty QN (37)
= ClL. Ty Qn (38)
Substitution in (36) results in
CcTV Qn =0 (39)
with
Cc =1+EcC[, (40)

This procedure can be repeated recursively for all depdmabemndinates. For the next body, one gets (premultiplying
by EL T this time)

av = —(BN"TH Co TN En)  ERTE CcTy )TN 1 Qv
= CI "IV Qn_y (41)

Note that matrix EX, V7 "C“7Y En) needs to be regular. Singularity would be the consequehaéad partitioning
in independent and dependent coordinates. After subsetitirt (15), one gets

Qn = CN"TN_ QN1 (42)



with
Cy =I+ENC], (43)

There is one more dependent coordinate to find. Substitofig42) in (39) and premultiplying by7 2" results in

CVTV Qn_1=0 (44)

with
Cy = "LCcTyCn (45)
= ANCy (46)

which is a symmetrical matrix. Further calculations yield:

an-1 = CgN R AN ¢ TN 47)
Qv = Cy Y TV ,0n s (48)
with
CqTN 1 (EN 1N 1TJ€C7VNTI\‘//—1EN—1) (EN 1N 1TJ\€CENTI\‘;—1) (49)
Cno1 = I+EN.C], | (50)

The constraints matrices* andCOTl are found through a backward recursion step, the joint aatisdwelocities through
a forward recursion step.
Note thatCC = C, this means it is a projection operator. Note also (BE = 0.

5.4 Canonical momenta

The canonical momenta of a constrained multibody systenomsedefined for the independent coordinates. There
are in this case thu§ — 2 canonical momenta, which can be found with:

8QT aQT 207
- ! K ¢ {independent bodi 51
P aqK Zz: aqK et € {independent bodi¢s  (51)

i= md i=dep
Using (15), (42) and (48) yields
pr = ExPj (52)
with the so called constrained momentum vector
Pi =Px+ > *“TC]P; je {adjacent outboard bodips (53)
J
CjT is set to unity for independent bodies.

5.5 Equations of motion

The equations of motion of the constrained MBS will be fousihg the principle of virtual power. To obtain a
suitable expression (31), one needs to write the virtudiapaelocities explicitly as functions of the independeirtual
joint velocities. When going from the tiff to the bas@, the first encountered independent coordinatg\is». Following
spatial velocities are dependent§r_»:

Oy 2=""Ty Oy _3+Ex_ 24N 2 (54)
Qn_1=Cn_ 1" TV QN2 (55)
Qv =CN"TN_Qn_1 (56)

Substitution in the principle of virtual power leads to fnlling expression for coefficief® y_»:



By o =EL ,(Pyo+Qn 2 xPy_o—Ty_o) (57)
+E T CR i (Pyo1+ Qo x Py — Tyoy) (58)
+EL vl ok N TECh(Py 4+ Qy x Py —Ty) =0 (59)

After the introduction of the constrained momentum veck®)( some tedious manipulations and a lot of perseveraince, i
can be proved that following equality holds:

PN—l + Qv xPny_1—Tpn_1+ NflTJ\I;C%(PN + Qv x Py — TN) (60)
=PY_ + Qv xPS_, — TG, (61)

with
TS =Ty + ¥V TECHT Ny + Y TE[CL + (Qn x I)CE — CL(Qn x DPy (62)

A comparable reduction can be made from bddy- 1 to body N — 2, ultimately resulting in the concise and familiar
form

Prv2 = EN_o(T{ o — Oy 2 X PY_y) (63)
with

T% o =Tn_o+"I§ ,CH_ Tx  + " Ty 1 [Ch_, + (Qn_1 x)CL_, = CL_(Qnv—1 x D)|PK_, (64)
All the other bodied< can be handled as for in open-loop systems:

prx = Ex(Tk —Qx x Pg) (65)

T = T +"T¢n T (66)

T¢ should of course be calculated in a second backward reauassot is dependent on the spatial velocities, which are
calculated in the forward recursion step. This extra raoarstep is often needed when the forces are velocity depgénde
anyway.

6 Coordinate velocities
The independent coordinate velocities are needed to othtairemaining Hamiltonian equations. The dependent co-

ordinate velocitieg|y_1, qn andqc where already calculated in section 5.3. To find joint veloqiy -, the projection
of the constrained momentum vector on the joint axis is neede

Py-2 = Ey 2Py o = EL ,(Py-2+ VT Cy 1Py _y) (67)
Each term needs to be expressed as a functiédof,. For bodyN — 1, one obtains:
Yo1 = Py + YT CiPy (68)
(Mpy_1 + ¥ " TECEMyCN YT )QN -1 (69)
= M(]“V_lﬂN—l = M;‘V_lcN_lN_lTR,/_2QN_2 (70)
Y1 = My +¥ T CEMNCNYTY (71)

MY, _, being the constrained mass matrix. For bddy- 2, one subsequently gets:

N2 = [My o+ "V Ty Ch_ M{_ Cn 1V TN ,] 02N (72)
= My 0y (73)
N2 = My + V7 T0  Ch My Cnoa VT, (74)

The joint velocityqy _» can easily be derived from above equations:

py—2 = ER Py, =Ey My (" Ty _3Qn-3 +En_2Gn-2) (75)
qN—2 = (E%—ZM%/'—QEN—Q)il(pN—Q - E%_QM?V_QNi?TA‘//_gQN_g)
—1
= Mj,_,[pn-2— EL oM§ 0" Ty 50— (76)



To obtain the joint velocity for bodyV — 3, one can substitute above equation in the expression focaghstrained
momentum vector.

No2 = (TN 35 + En_2dn_2) ())
= My [" T sy—s + ExooMS,, (Pr—2 — EY oMy 5" TV Qs (78)

= My " TN 3Qy 3+ Dy, (79)

M;V—2 = 5\/—2 - M?v-zEN—2M§;1,2E%—2M5V—2 (80)
Dy, = M?v_zEN—zMgl,sz—z (81)

Repeating previous procedure gives:

Nz = Pnos+" Ty ,Pyoo (82)
= (My_3+ T8 .My " T 3)Qn_3 + " T{_,Dy _, (83)

= My 39y 3+Dny3 (84)

Sos = My_g+ VT My L,V TV, (85)
Dy-s = “7I{ ,Dy_, (86)

The joint velocity is then:

PN-3 = E%—spﬁv—:& = EJT\7—3M?V—3(N7&TZ\‘//—4QN—4 + EN—3QN—3) + E%—?,DN—S (87)
av-s = (EN_3M% 3En 3) '(pv-s —EL 3Dn_s —Ef MY 3" Ty ,Qn _4)
-1
= Mj, , (Ppn—3 —dn_3— E%—3M?V—3N7‘ ]\Y—4QN—4) (88)

All the other joint velocities can be found just like for opkrop systems (see section 4).
7 Summary of thealgorithm

Before calculating the Hamiltonian equations of motion,aatiion must be made in dependent and independent
coordinates. This should be done carefully, consideringwdarity conditions. The actual algorithm is divideddn
recursion steps. In a first, backward recursion step, thet@int matriceC, the constrained mass matridek® and the
remainder momentum vectol3 are computed. In the following, forward recursion stepcabtrdinate velocitiegy and
all spatial velocity vector§? are calculated. In a last, backward recursion step, thenagleted force vectord'e are
obtained, from which the time derivatives of the canonicahmentap can be found.

8 Conclusions

In this paper, it was shown through a simple example howWam) recursive Hamiltonian algorithm can be obtained
for a constrained multibody system. The use of the Ham#torequations of motion has a positive influence on the
evolution of the constraint violation errors, as constiigre introduced at velocity level instead of accelerakawel.
Additionally, the algorithm is based on its open-loop vatjavhich proved to be more efficient than recursive acctitera
based algorithms when comparing the number of requireldra€tical operations to obtain the equations of motion.
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