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Abstract. Structural health monitoring and damage detection is very important from the maintenance of the constru ctional 
elements point of view. The main objective of the theoretical portion of this problem is to develop a model that will determine the 
relationship between the damage and the signal obtained in testing process. In case of wave propagation analysis so far used 
models based on the Finite Element Method are inefficient due to the computational effort. For that reason new models, based on 
the Spectral Element Method (SEM), are under consideration of many research centers. In the article the analysis of Lamb wave 
propagation in rods with discontinuities is presented. For that purpose new spectral element is developed. The above element is 
based on three different theories. A procedure of creating the dynamic stiffness matrix for the models is described in details. 
Numerical examples illustrate the wave propagation process in rods with fatigue crack, with the change of the cross section area 
and the change in material properties. The signal processing of the responses allows pointing out what kind of the disco ntinuity one 
has in the element tested.  
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1. Introduction 
 

Structural health monitoring and damage detection has received a considerable amount of interest over the last few 
decades. Previous approaches to non–destructive evaluation of structures, and assessing their integrity, typically 
involved some form of human interaction. Recent advances in smart materials technology resulted in a renewed interest 
in developing advanced self–diagnostic methods for assessing the state of a structure without any human interaction 
(Chang). The goal is to reduce the human contribution while monitoring the integrity of a structure. With this goal in 
mind, many researchers have made significant progress in developing damage detection methods for structures based on 
traditional modal analysis techniques. These techniques are often well suited for detection of rather big defects, because 
small defects do not influence changes in low frequencies, thus global behavior of the system is not affected. For this 
reason new methods based on smart materials have been rapidly developed in last years. 

Wave propagation in structural elements has been studied over considerable period of time. Although mathematical 
frameworks are well developed wave propagation problems in real scale engineering structures is an open area of 
research. The main problems, in analyzing of propagation of high velocity waves in distributed structures, are that 
spatial discretisation must be accurate to capture the amplified effect of wave scattering at structural discontinuities. A 
conventional modal method, when extended to the high frequency regime, becomes computationally inefficient since 
many higher modes that participate in the motion will not be represented. For a specific geometry and finite, periodic or 
semi–infinite boundary conditions, many solution techniques have been reported (Bathe, M. Redwood, Cheung). 
Among many frequency domain methods, the Spectral Element Method (Doyle) has been found suitable for analysis of 
wave’s propagation in real engineering structures. 

The Spectral Element Method utilizes the exact solution of differential equations governing a problem. This exact 
solution is used as an interpolating function for the spectral element formulation. The use of the exact solution in the 
element formulation ensures the exact mass and stiffness distribution. It means that only one element can be used for 
modeling a very large part of the structure. Hence, the problem size is much smaller in comparison to the conventional 
Finite Elements formulation. For example, in order to model properly wave propagation with frequency about 200 kHz, 
in cantilever rod with length 6m and cross-section 0,02x0,02 m almost 465 rod finite elements is needed. It means that 
length of the one element is about 0,012 m, and it seems that they are not rods in a physical meaning. Obviously it is 
possible to use other types of finite elements (e.g. 3D-solids), but in this case the size of problem would be greater. 
What is also obvious the time of numerical calculations would be long, and errors of numerical integration could be 
considerable. The spectral analysis allows using one spectral element for any length, unless there is change in cross 



section or material parameters. If something like that happens it is very simple to join several spectral elements in a way 
that is commonly used in finite elements method. 

The spectral element program architecture is very similar to the technique of the finite element as far as the 
assembly and solution of equations is considered. Firstly, the excitation function is split up into a number of frequency 
components using the forward Fourier Transformation. Next, as a part of a big frequency do–loop (as opposed to a do–
loop over time step in the conventional Finite Elements formulation), the dynamic stiffness matrix is generated, 
transformed and solved for unit impulses at each frequency. This yields directly to the Frequency Response Function of 
the analyzed problem. The frequency domain responses are then transformed to the time domain using the Inverse 
Fourier Transformation. The spectral elements are available for rods, and layered solids. For rod elements one can find 
spectral elements developed on the bases of elementary rod theory, however there are no spectral elements, which are 
based on modified theories. Such elements would be suitable for analysis of waves with higher frequencies. Apart from 
that they take into account more realistic assumption undergoing the longitudinal and transverse deformations. 
Problems of longitudinal waves propagation have been analysed up till now using the elementary theory that assumes a 
constant longitudinal displacement along the cross–section of the rod and also neglects a transverse deflection. The real 
deformation of the rod is more complicated, and in broad terms we can identify three distinct behaviors. The first is that 
the longitudinal displacement has a nonzero mean value (Love rod theory), the second is that the transverse deflection is 
nearly linear (Mindlin–Herrmann rod theory), and the third that the longitudinal displacement has almost a parabolic 
distribution (three–mode rod theory). It means that higher order theories should have two additional deformations 
modes – the transverse deflection and the parabolic longitudinal displacement along height of the rod. 

In the present paper new spectral elements for analysis of longitudinal waves in rods and in rods with fatigue cracks 
are developed. The elements are based on the Love and Mindlin–Herrmann rod theories (Doyle). In case of the Love 
rod theory, the spectral element has two nodes and one longitudinal degree of freedom at a node. For the Mindlin–
Herrmann rod theory the spectral element has two nodes and two degrees of freedom at a node – the longitudinal 
displacement and rotation that describes transverse contraction. In all cases the crack is substituted by a dimensionless 
spring of the flexibility θ which is calculated by Castigliano’s theorem and laws of the fracture mechanics 
(Dimarogonas). Using spectral element with crack allows analyzing high frequency excitation signal with small 
computational time and with high numerical accuracy. It is undoubtedly eligible feature and may have big influence on 
the modern damage monitoring techniques. A procedure of creating the dynamic stiffness matrix for the models is 
described in details. Numerical examples illustrating wave propagation process in rods for every model respectively are 
performed. The influence of damage on wave propagation is shown and a procedure to make use of those differences is 
presented. Comparison of crack identification results obtained for Love theory is included.  
 
2. Rod theories 
 
2.1. Elementary theory 

 
A model of spectral element based on the elementary theory is presented in Fig.1.a. The element has the length L 

and the constant cross–section A. There are two nodes with one longitudinal degree of freedom per node.  
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Figure 1. The spectral element models for the elementary and Love theories. 

 
The elementary theory assumes that the axial deformations along the neutral axis of the rod are the same in all 

points of the cross–section, and also the transverse deflections are negligible. The differential equation of the problem 
can be written as follows: 
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with the boundary condition as: 
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where: u0 is the average axial displacement, E denotes Young’s modulus, A is the area of the cross–section of the 
rod and ρ is the density of the material. 



 
For this theory the spectral element was established by Doyle [5]. The dynamic stiffness matrices for the two node 

spectral element Kdf and the throw–off element Kdt can be presented in the following forms: 
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where: k is the wave number calculated as a function of the frequency ω and material properties ρ, E: 
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2.2. Love theory 
 

The model of the spectral element based on the Love theory is also presented in Fig.1.a. The element has the same 
length and constant cross–section as the one calculated with elementary theory. Aforementioned element has two nodes 
with one longitudinal degree of freedom per node. The Love theory modification is based on the assumption that each 
material point of the rod has a transverse velocity. It means that the kinetic energy is affected by additional terms; 
nevertheless the strain energy is the same as of the elementary rod theory. The displacement field is also the same, and 
differential equation of the problem is only slightly modified, what can be expressed in the following form: 
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with the boundary condition as: 
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The term J denotes the polar moment of inertia of the rod’s cross section, and ν is the Poisson ratio of the material. 
The wave number for this model is given by relation: 
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It should be noticed that the wave number k, in opposite to elementary theory, can be purely imaginary. In such 
case the transverse motion is absorbing all the input energy. 
 
2.2.1. Rod spectral element for Love theory 
 

The general longitudinal displacement of a rod can be written in the same form as for the elementary theory: 
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Constants A0 and B0 can be found from the following nodal conditions: 
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which leads to the following system of equations: 
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with ikLep −= . 
The forces within the element can be expressed using formulas from Eq. (6) by differentiating the assumed 

displacements and calculating them for left end with x=0 and for the right end with x=L-L1. Taking into account 
formulas for the axial displacement the nodal forces are given by the following expression: 
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Then using formulas for calculating constants A0 and B0 as a function of the nodal displacements, the relation 
between the nodal forces and the nodal displacements can be calculated. The square, symmetric matrix in this relation 
denotes the dynamic stiffness matrix Kdf of the spectral element based on the Love theory. 

 
2.2.2. Throw–off spectral element for Love theory 

 
For the throw–off element based of the Love theory the general longitudinal displacement for a rod can be written 

is the same form as for the elementary theory: 

ikx
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Constant A0 can be found from the following nodal condition: 
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which leads to the equation: 
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The forces within the element can be expressed using formulas from Eq. (6). The nodal forces can be found using 
the following nodal condition: 
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Taking into account formulas for the axial displacements and the lateral contractions the nodal forces are given by 
the expression: 
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The relation in the brackets in Eq. (16) denotes the dynamic stiffness matrix Kdt of the throw–off spectral element 
based on the Love theory. 

 
2.2.1. Rod spectral element with transverse open and not propagating crack for Love theory  

 
The spectral element for a cracked rod based on Love rod theory is presented in Fig.1.a. The element has two nodes 

and one degree of freedom per node. The longitudinal displacement u0 can be expressed for the left and right part of the 
element as follows: 
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( )1
)]xL(L[ik

2
)xL(ik

22,0 LL,0x    for    eBeA)x(û 11 −∈+= +−−+−  (18) 

where k is the wave number given by Eq. (7). 
The constants A1, B1, A2 and B2 can be found using traditional boundary conditions at the ends and special boundary 

conditions at the crack place where x=L1 for )x(û 1,0  and x=0 for )x(û 2,0 : the equality of longitudinal forces and the 

total change of displacements. Within the second mentioned boundary condition one includes the stiffness at the crack 
place (θ) for the first mode. The way of calculating the stiffness reduction due to crack appearance is shown in next 
paragraph. Taking into account formulas (17–18) and the boundary conditions the constants A1, B1, A2 and B2 can be 
expressed as a function of the nodal displacements in the following manner: 
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The value of θ indicates the stiffness at the crack place calculated according the fracture mechanics law. The 
precise information is given by Krawczuk et al. The relationship between the nodal forces (Eq. (6)), calculated for the 
left end with (x=0) and for the right end with (x=L–L1), and the nodal displacements denotes the dynamic stiffness 

matrix dynK  of the spectral element for the cracked rod, and is given by: 
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2.3. Mindlin–Herrmann theory (two–mode) 
 
A model of a spectral element based on the Mindlin–Herrmann theory is presented in Fig.2.a. The element has the 

same geometry as in two previously described cases. It has also two nodes with two degrees of freedom per node (the 
longitudinal displacement and the rotation). The Mindlin–Herrmann theory can be developed taking into account 
independent shearing deformation due to transverse displacement.  
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Figure 2. The spectral element models for the Mindlin–Herrmann theory. 

 
The displacements in Mindlin–Herrmann theory of rods are assumed as follows (Doyle [5]): 
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where: ψ0 denotes the transverse contraction. 
This approach takes into account the lateral displacements, but ignores the nonuniform distribution of the axial 

displacement in the cross section of the rod. The differential equations for the Mindlin–Herrmann theory, governing the 
rod vibration problem, are as follows (Doyle [5]): 
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with the associated boundary conditions (at each end of the rod) 
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where: 
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=µ  and I is the geometrical moment of the rod’s cross section. 

Parameters K1 and K2 are calculated from the formulas: 
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They are a set of coupled equations for the longitudinal displacement and lateral contraction. Since there are two 
dependent variables u0 and ψ0, and the coefficients are constant, to obtain the spectrum relation one assumes solutions 
in the form: 
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After the substitution into differential equations give the system to be satisfied as: 
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Setting the determinant to zero gives the characteristic equation for determining k as: 
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This characteristic equation is quadratic in k2 and therefore, there are two–mode pairs in contrast to the single pair 
of the elementary and Love theories.  

 
2.3.1. Rod spectral element for the Mindlin–Herrmann theory 

 
The general longitudinal displacement and rotation of a rod can be written as: 
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where Ri are the amplitude ratios given by: 
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Constants A0, B0, C0 and D0 can be found from the following nodal conditions: 
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The forces within the element can be expressed by differentiating formulas from Eq. (26) and by using the 
following nodal conditions one obtains: 
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Taking into account formulas for the axial displacement and rotation with the formulas for calculating constants A0, 
B0, C0 and D0 it is possible to express the nodal forces as a function of nodal displacements. The relation between the 
nodal displacements and the nodal forces contains the square, symmetric matrix, which is the dynamic stiffness matrix 
Kdf of the spectral element based on the Mindlin–Herrmann theory. 

 
2.3.2. Throw–off spectral element for the Mindlin–Herrmann theory 

 
For the throw–off element (Fig.2.b) based on the Mindlin–Herrmann theory the axial displacement and rotation are 

given by: 
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Constants A0 and B0 can be found from the following nodal conditions: 
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The forces within the element can be expressed using formulas from Eq. (25). The nodal forces can be found using 
the following nodal conditions: 
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With the formulas for calculating the axial displacement and rotation and using formulas for calculating constants 
A0 and B0 as a function of the nodal displacements the relation between the nodal forces and the nodal displacements 
can be calculated. The square, symmetric matrix in this formula is the dynamic stiffness matrix Kdt of the throw–off 
spectral element based on the Mindlin–Herrmann theory.  

 
2.3.3. Rod spectral element with transverse open and not propagating crack for the Mindlin –Herrmann theory 

 
The spectral element for a cracked rod based on Mindlin–Herrmann rod theory is presented in Fig.2.c. The element 

has two nodes and two degrees of freedom per node. The longitudinal displacement u0 and rotation ψ0 can be expressed 
for the left and right part of the element as follows: 
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with Ri defined by Eg.(32) and k1 and k2 denoting the wave numbers which are a solution of Eq. (29) .  In order to 
calculate unknown constants A1, B1, C1, D1, A2, B2, C2 and D2 the following boundary conditions are used: 

- for the left end of the element  (x=0): 
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- at the crack location (x=L1 for )x(ˆ  ),x(û 1,01,0 ψ  and x=0 for )x(ˆ   ),x(û 2,02,0 ψ ): 
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A)2()x(ˆA

x
)x(û
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- for the right end of the element (x=L–L1): 
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where 31 q̂,q̂  denote the nodal axial displacements, 42 q̂,q̂  are nodal rotations and .A)2(c* λ+µ=θ  
Taking into account formulas (39) and the boundary conditions given by Eqs. (41–46) the constants A1, B1, C1, D1, 

A2, B2, C2 and D2 can be expressed as a function of nodal displacements. 
Nodal forces are given by the following formulas: 
- for the left end of the element (x=0): 
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- for the right end of the element (x=L–L1):   
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Then using the formulas for calculating constants A1, B1, C1, D1, A2, B2, C2 and D2 as a function of the nodal 
displacements, the relation between the nodal forces and the nodal displacements can be calculated. The square, 
symmetric matrix in this relation denotes the dynamic stiffness matrix Kdyn of the cracked spectral element based on the 
Mindlin–Herrmann rod theory. 

 
 

3. Exemplary results 
 
This section is devoted to comparison of results obtained for different rod theories. All numerical tests were done for 

a cantilever steel rod with such geometrical dimensions: length 4 m, width 0,02 m, height 0,02 m. The following 
material properties are utilised: Young’s modulus 210 GPa, Poisson ratio 0,3 and density 7850 kg/m3. Two different 
signals are used as the source of propagating wave. Fig.4 illustrates the comparison of analysed signal shapes, duration 
times and their FFT. Every of the signal presented is co called ‘package’ obtained from the multiplication of a triangle 
and a sinusoidal function. Signal marked as (a) is the slower tested and lasts for 0,3 ms. It allows to excite waves of 
frequency up to 80 kHz. The faster of used and presented signals (case (b)) lasts for 0,15 ms and lets to operate on the 
biggest frequency range – up to 160 kHz. 

 
Fig. 4. Comparison of tested excitation signals in time and frequency domains. 

 
The next two figures present comparison of reflected signals obtained for the elementary and modified theories. For 

better illustration of differences the accelerations calculated for all the models are normalized according to their 
maximum value. Figure 5 presents comparison of results obtained for the excitation signals tested. The first plot 
(Fig.5.(a)) illustrates differences in reflected signal obtained for elementary and Love theories for the slower signal 
from Fig.4(a), the second plot (Fig.5.(b)) shows differences for the faster signal shown at Fig.4(b). As it can be seen 
more visible differences between results can be observed for higher frequencies excited by the input signal. 

 

 
Figure 5. Reflected signals obtained for the elementary and Love theories for the slower excitation signal (a) for the 

faster excitation signal (b). 
 



 
Figure 6 presents the comparison of results obtained for both examined excitation signals with the models based on 

elementary and Mindlin–Herrmann rod theories. The meaning of the plots is the same as in Fig.5. The differences 
between results for the models are much more visible when the input signal excites higher frequencies. As it can be 
noticed on Fig.6(b) for the Mindlin–Herrmann theory additional reflections appeared, which were not present in case of 
the elementary or Love theories.  

A practical remark is that before choosing a model the analysis of wave numbers for specific material and 
geometrical data is required. When the excitation signal frequency does not excite higher modes the Love theory gives 
very good results. In other case, that is for signal frequencies, which excite higher modes, the Mindlin–Herrmann theory 
should be applied. 

 

 
Figure 6. Reflected signals obtained for the elementary and Mindlin–Herrmann theories for the slower excitation signal 

(a) for the faster excitation signal (b). 
 
 

4. Discontinuity identification 
 
From the analysis done it follows that the reflections from different discontinuities appear shifted in time, especially 

in case of changing material properties. It was also noticed that there are phase shifts between the excitation signals and 
reflections from discontinuity. On that bases an attempt to identify the existence of discontinuity is performed. For that 
purpose the cross correlation function was utilized, which gives information about the phase shift in the signal. The 
mathematical formula showing the relation between the reference or excitation signal (xref) and the reflection from 
discontinuity, for a certain time delay (τ) is given by: 

∑
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where N is the samples number. When the cross correlation function is positive – indicates the same phases of 
examined signals, then it is negative – there is a phase shiff between signals analysed. The second analysed value was 
the signal power which is given by the following relation: 
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where N is the samples number. 
Changes of the cross correlation function (CCF), calculated for two first reflections of the examined signals are 

presented on Fig. 7. While the numerical simulation the relative crack depth was changed from 0,5% to 50% of the rod 
hight. Fig. 7 presents the CCF obtained all described rod theories for the slower signal (Fig. 4(a)), whereas the Fig. 8 
illustrates the similar changes but calculated with the faster signal (Fig. 4(b)). On every plot proper marks are performed 
to indicate the theory from which comes the curve. After analysing the CCF calculated for both signals one can 
conclude that in case of utilizing the faster signal the changes of the factor seem to be sharper compared with those 
calculated for the slower one. Important influence can be noticed regarding the theory – analysis of signal with higher 
frequency range is better when Mindlin – Herrmann theory is applied. 

 



   
Figure 6. Changes of the Cross Correlation function for the excitation signal (a) and for the excitation signal (b). 
 

 
5. Conclusions 

 
The paper presents wave propagation in rods with fatigue cracks. Analyzed responses are obtained for three rod 

theories: the elementary, the Love and the Mindlin – Herrmann rod theory. All solutions are obtained with spectral 
element method. As concluding set of remarks it should be pointed out that the excitation frequency influences the 
sensitivity of the system. The bigger the frequency is the smaller damage can be found. However it is important to keep 
in mind that higher frequencies are properly modeled with theories that consider the presence of higher modes excited 
with very fast signals. Reassuming the bigger excitation signal frequency is the better damage identification sensitivity, 
however one needs to remember about the equipment limitations while practical implementations. 

Second important conclusion from the paper is that due to the crack occurrence certain differences appear in a 
response signal. They come from additional reflections from the damaged area, which is of course sort of discontinuity. 
The differences are utilized for calculation cross correlation factor, which may be helpful for damage identification. 
Knowing that damage influences the damage identification function it would be possible to indicate damage presence 
on the bases of the measured signal only. Adequate simple example is shown. Although the proposed procedure is 
applied on a simple rod element only the idea is to widen the method on more complicated elements. This task, as well 
the experimental verification of proposed models, is the main subject of the authors’ present research activities. 
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