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Abstract: This work presents the practical aspects of the use of the describing functions method for nonlinear systems
analysis. Numeric and experimental subjects will be discussed. An hydraulic actuator very common in launch vehicle
attitude control loop is used as example. The results show that inaccurate conclusions can be produced by restrictive
assumptions and problems with acquisition and mathematical procedures.
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INTRODUCTION

Physical systems with nonlinear elements can present a veryrich dynamical behaviour, including limit-cycle and
chaos. In some situations these phenomena are undesirable and it is important adopt strategies to treat them. Limit-cycle
is common in attitude control loop of aerospace vehicles. Stout and Snell (2000) presented a study of this phenomenon in
on-off aerospace pressure control, while Newman (1995) dida deep discussion of limit-cycles in a launcher control due
to nonlinear hydraulic actuator.

The VLS (Brazilian launcher vehicle) uses hydraulic actuators in attitude loop too. This element has a strong nonlinear
characteristic since that an high amplitude limit-cycle was noted so in hardware-in-the-loop simulation as in flight data.
Because of this an important amount of work is being devoted for the actuator description. In Brito (2006) was discussed
a initial characterisation based on classical experimental analysis likeTakens reconstructionandPoincaŕe section. Bueno
(2004) presented the use of the describing functions methodfor the control loop with hydraulic actuator, however the pre-
dictions of the limit-cycle’s amplitude and frequency wereimprecise. The describing function method is deeply discussed
in Sastry (1999) and Slotine and Li (1991).

This work will discuss some details involving the describing functions method and its application in the limit-cycle
analysis. As it will be seen, this methodology is very usefulto predict the existence of limit-cycle in closed loop as well
it can give approximated values for amplitude and frequencyof the oscillations. However the predictions can become
very inaccurate because of poor data acquisition, very restrictive assumptions and mathematical procedures. Herein these
difficulties and possible remedies will be presented. The discussion is based both in open and closed loop nonlinear
identification of the hydraulic actuator used in VLS. As conclusion, it will be shown that the describing functions method
can not be the best way of studying the limit-cycle, overall when the dominant nonlinearity kind is unknown.

DESCRIBING FUNCTIONS

The describing functions analysis is an extension of the frequency response method for linear systems. Under certain
conditions, the describing functions can be used to predictand analyse nonlinear systems, mainly the limit-cycle behaviour
in closed loop systems.

The idea is similar to the linear frequency response method.For linear systems, if it is applied a sinusoidal input
the output will be a sinusoidal signal with same frequency. However the output is often a periodic, but generally a non-
sinusoidal signal when system present some kind of nonlinearity. By using Fourier series, this output can be expanded ina
sum of sinusoidal and co-sinusoidal signals in the fundamental frequency (same of the input) and in the higher harmonics.
The describing function is the amplitude’s and phase’s relationships between the input sinusoidal and the fundamental
component of the output.

As it is discussed in Slotine and Li (1991), the nonlinear element has to satisfy the following conditions for good
results by the describing function analysis:

i) only the fundamental component of the output has to be analysed. This is the most important assumption of the
describing function method;

ii) the nonlinear element is time-invariantbecause the describing functions analysis uses the NyquistCriterion that is
applied only to time-invariant systems;

iii) odd nonlinearitysuch that positive and negative cycles of the input are equally affected by the nonlinear element.
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To obtain a basic version of the describing function method,let us suppose the system in Figure 1a, with a sinusoidal
input of amplitudeA and frequencyω.

Figure 1 – Diagrams for nonlinear analysis.

The output can be expanded by Fourier series
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If the nonlinear element satisfies all conditions of the describing functions method, the coefficienta0 = 0 due to the third
assumption, and only the fundamental component has to be considered. Then, the output can be approximated by

y(t) ≈ a1cos(ωt)+b1sin(ωt) = M sin(ωt +ψ) = I {M ej(ωt+ψ)}, (6)

whereI represents the imaginary part of a complex number.

The describing functionis defined like the complex ratio of the output’s fundamentalcomponent by the sinusoidal
input

N(A,ω) =
M ej(ωt+ψ)

A ejωt . (7)

This relationship is dependent of both input frequency and amplitude due to the nonlinearities.

The describing function is used to predict limit-cycle in closed loops with nonlinear elements. In Figure 1b,G( jω)
represents the linear element in the system whileN(A,ω) is the describing function of the nonlinear element. According
to Nyquist criterion, self sustained oscillation occurs inthis loop if and only if

G( jω)N(A,ω) = −1⇒ G( jω) =
−1

N(A,ω)
. (8)

Then, the limit-cycle will occur if and only if the curveG( jω) intercept the curve−1/N(A,ω) in the complex plane. The
limit-cycle’s frequency is given by the value ofω where they intercept themselves. The limit-cycle’s amplitude is given
by the value ofA such that−1/N(A,ω) = G( jω).

HYDRAULIC ACTUATOR

Hydraulic actuators are very common in a lot of processes, overall in aerospace systems; The main manoeuvres of a
launcher vehicle are achieved by control systems based in hydraulic actuator commands.
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The real behaviour of the hydraulic actuator is quite different of its linear model since that this element has some
nonlinearities likesaturation, backlashandCoulomb and viscous frictionthat associates the actuation friction with the
main piston speed. These effects seem to be deeply linked with limit-cycle in the aerospace attitude control loop with
hydraulic actuators.

A detailed study of the nonlinear phenomena is important fora good prediction of the frequency and amplitude of
the limit-cycle. The describing function method is very useful for this, however poor results can be obtained due to the
experimental problems and the assumptions required by the method. These questions are discussed below.

ANALYSIS OF THE EXPERIMENTAL DATA

In this section will be presented some results of the hydraulic actuator and the main experimental issues involving
the describing function analysis. Two kinds of investigations were done: open loop frequency response and closed loop
analysis.

The open loop frequency response is done in the same way of thelinear analysis - sinusoidal inputs with different
frequencies are applied in the system and its output is studied. The main difference here is that the input’s amplitude is
varied too, since that both amplitude and frequency can influence the output signal. They were done 91 open loop tests,
divided in 7 different amplitudes for the sinusoidal inputswith the following values1

A1 = 0.2◦ A2 = 0.5◦ A3 = 0.7◦ A4 = 1.2◦ A5 = 1.6◦ A6 = 2.1◦ A7 = 2.6◦ .

For each amplitude above, were created sinusoidal signals with 13 different frequencies (0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5,
7, 10, 15 and 20Hz). The actuator response is presented in theFigure 2. Observe that the nonlinear influence is clear for
higher input amplitudes - the amplitude plot has a region in which the values decrease linearly above of a frequency value.
It is more difficult conclude something about the phase plot due to the imprecision in the phase measurement. However it
is possible note a slight distortion for higher amplitudes and frequencies.
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Figure 2 – Frequency response of the hydraulic actuator. Each cu rve represents one amplitude for the sinusoidal
input.

Other tests were performed for the hydraulic actuator in closed loop with a known dynamics. For these experiments,
it was used a system with the following representation

G(s) =
K1(K2s+1)

s2 (9)

whereK1 andK2 are chosen to produce a limit-cycle (1≤K1 ≤ 100 and 0.04≤K2 ≤ 0.1). It was tested 30 conditions with

1The amplitudes are measured indegreesthat corresponds to the real deflection of the aerospace movable nozzle that the hydraulic actuator.
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K1 andK2 in the intervals above; the amplitude and the frequency of the limit-cycle that was produced in each experiment
are presented in the Figure 3.
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Figure 3 – Frequency and amplitude of the limit cycle for each closed loo p experiment.

For applying the describing functions, one should verify the assumptions required by the method. Firstly, the nonlin-
earities of the actuator must be odd. This implies that the output’s positive cycle is equal to the negative cycle. In all tests
the hydraulic actuator showed be odd. It must be assured alsothat the actuator does not have any time-variant behaviour,
what was observed in the experimental data.

The most critical assumption is guaranteeing that only the fundamental component of the output spectrum is sufficient
to describe it properly. This means that the actuator does not deforms strongly the input signal, preserving approxi-
mately the same aspect in the output. One way of testing this condition is measuring the importance of the fundamental
component of the output, using theTotal Harmonic Distortion, defined as

%THD = 100

√

∑N
i=2y2

i
√

∑N
i=1y2

i

, (10)

whereyi is the amplitude of the harmonic component of the output;y1 is the fundamental component. Low values for
THD indicate that the output signal can be well described by its fundamental component. The harmonic distortion analysis
for the hydraulic actuator is presented in the Figure 4. Notethat theTHD is less than 15% in all the tests, indicating that
only the fundamental component is suficient for analyze the element behaviour.
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Figure 4 – Total Harmonic Distortion of the hydraulic actuator.
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Since that all the necessary assumptions for the describingfunction method were assured, one can apply it for the
analysis of limit cycle in the hydraulic actuator. Initially, it is important predict the limit cycle existence in a closed loop
system containing this element. The closed loop exhibit a self-sustained oscillation if the linear’s locus crosses theinverse
of the nonlinear’s locus in the Nyquist plot. The complex representation of the nonlinear element can be extracted of
the Figure 2, while the complex representation of the linearpart is given in (9). Plotting both complex loci in the same
Nyquist plot, one can obtain the Figure 5. Since that there are crossover points between the plots, it is possible predict
that the closed loop exhibits a limit-cycle.
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Figure 5 – Nyquist plot of the linear element and the inverse of the non linear element. It is possible predict a
limit-cycle in a closed loop with both elements.

The next step is trying predict the amplitude and the frequency of the limit-cycle. In the frequency response plot, the
prediction of the limit-cycle is slightly similar to those used in the Nyquist plot. A closed loop exhibit limit-cycle ifthe
nonlinear’s locus and the inverse of the linear’s locus cross themselves at the same frequency in both amplitude and phase
plots. So, the limit-cycle frequency will those where the crossover point exists and the limit-cycle amplitude will be those
of the respective nonlinear frequency response. The precision of the estimations will depend of the data and mathematical
procedures quality. Very inaccurate values can be found dueto poor computation of the experimental frequency response.
Generally good amplitude estimations are achieved by usingFFT algorithms, however the same is not true for the phase.
Alternative methods were tested for the phase calculation,including least squares identification, but the best results were
reached with simple search of the input-output phase delay.Obviously, this is an important source of errors.

To demonstrate how these imprecisions can affect the estimations, let us suppose (9) withK1 = 50 andK2 = 0.04,
that corresponds to the systemG2 on the Figure 3. As it can be seen, the amplitude of the limit-cycle is around 1.3◦

while its frequency is 0.6Hz, both of them obtained in experimental test. By redrawing the frequency response in the
Figure 2 adding the response of the inverse of the systemG2, one can get the Figure 6. Note that the amplitude loci cross
themselves around 1Hz (70% bigger than the real value), but there is any crossover point in the phase plot. The limit-cycle
can not be predict by this figure, however it exists in the experimental test.

By usingK1 = 10 andK2 = 0.06, that corresponds to the systemG10, one can obtain the frequency response presented
in Figure 7, with limit-cycle of frequency 0.45Hz (assuming a error in the phase estimation). For the same condition, the
experimental test exhibits a limit-cycle with frequency of0.3Hz, with good agreement. The amplitude of the limit-cycle
is given in figure 7 by theA7 response that is equal to 2.6◦, but the experimental value was of 0.7◦. Again the use of the
describing function method failed for the prediction of thelimit-cycle measurements.

These results show that the describing function method is not useful for a precise frequency/amplitude prediction,
unless a lot of cautions are taken. Initially, it is very important that the nonlinear element attempts the assumptions required
by the method. One can obtain incorrect conclusions about the existence of the limit-cycle and its frequency/amplitude
values, by applying the analysis to a system in which these requirements are not assured.

Evidently it must be discussed the experimental nature of the describing function method. Errors in the measurements,
poor mathematical tools and other sources of inaccuracies can lead the analysis to false conclusions. In this way, other
more robust methodologies of nonlinear analysis must be adopted when a better description of the element behaviour is
necessary.
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Figure 6 – Frequency response of the nonlinear hydraulic actuator and the inverse of the G2 system.
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Figure 7 – Frequency response of the nonlinear hydraulic actuator and the inverse of the G10 system.
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CONCLUSIONS

This work presented experimental issues involving the use of the describing functions method for nonlinear analysis.
An hydraulic actuator was used as example since that it can produce limit-cycle when is in closed loop with proper linear
dynamics.

As it was discussed, the describing functions method needs alot of cautions to provide useful informations about
limit-cycle in closed loop. Mainly, it is necessary guarantee that the nonlinear element attempts some conditions likeodd
behaviour and dominance of the fundamental component underthe rest harmonics of the output signal. It is important
also take care of experimental details, like a good signal acquisition and rich mathematical methods to analyse the data.
Without these conditions the describing functions method does note give good results for applications where a closed
formulae to nonlinearities are unknown or very difficult to find. In these cases, it is recommended that other methodologies
for nonlinear analysis are adopted.
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