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constraints.

cost reasons.

NOMENCLATURE

C = damping matrix\{xN), N.s.m*

f = generalized excitation vector
(Nx1), N

F = random excitation force vector
(Nx1), N

H = system frequency response
matrix (1xn), m.N*

K = stiffness matrix\xN), N.nm*

Mo = zero order spectral moment

m, = second order spectral moment

M = mass matrix\\xN), kg

n = number of considered modes,
dimensionless

N = number of degrees of freedom,
dimensionless
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nel = number of elements,
dimensionless

p = hydrostatic pressure, MPa

g = modal co-ordinate vector,
dimensionless

u = mode shape matrix normalized
with respect to the mass matrix,
m

x = displacement vectoNk1), m

X = velocity vectoi(Nx1), m.s*

X = acceleration vectoNi&1), m.s?

Greek Symbols
¢ = damping factor, %
A = square of the natural frequency
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Abstract: This work presents a global optimisatgtrategy for randomly excited linear elastic stwets with fatigue
life constraints, based on coupling stochastic a®derministic methods involving sensitivity anaysdne of the
originalities is the use of a method for evaluatisigen sensitivities and damage sensitivities.him ecent years,
efficient new approaches for multiaxial random dat life problems have been developed using spetithods
producing reduced computational costs. These frecuéormulations are well suited to random vibratiproblems
and give a fast and accurate estimation of thecstmal fatigue life from the response power spdaiiensities (PSD)
and more precisely the stress PSD. Thus by usiegtisph analysis properties an original formulatiarf damage
sensitivities is presented according to the chosequency formulation of the Crossland’s damageéedon. The
estimation strategy appears to be computationdfigient because only one modal analysis is neddesbtain the
overall damage sensitivities. This approach elinésaone of the essential difficulties in sensitivithalysis
considering fatigue life of structures subject tmdom excitations, which is rarely attempted duedmputational

Keywords: multiaxial fatigue, stochastic optimisation, sensitivity analysis, random vibrations

@; = power spectral density of the
generalized force, hHz*!

@, = stress power spectral density,
MP&.HZ*

@, = equivalent Von Mises stress
power spectral density of the
generalized force, MBaiz?

@, = power spectral density of the
hydrostatic pressure, MPHZz*

o. = Von Mises stress, MPa

o.m=mean of the Von Mises stress,
MPa

¢ = modal stress, MPa

w = circular frequency of the
undamped system, rad.s

The definition of the using conditions of a struetis an important task in the design stage of ¢his. Indeed in
many cases the structural solicitations are not eefined due to the random nature of the structuméronment. For
example the structures such as bridges or buildingsubjected to the random kind of the wind erdhrthquakes. A
definition of these solicitations in the time domappears to be complicated and on the other Hatidtigal properties
of these loads can be defind®l assuming ergodic excitations, spectral analigsissed to deals with random vibration
problems. The excitations are then fully describgaheir second order statistical properties: time@gan value, their
autocorrelation functions and also their power spécdensity function (PSD). The PSD is a significenathematical
tool in random vibration analysis, giving the infmation on the signal frequency content as welhasstgnal variance.

In the light of this, some multiaxial failure cnite initially formulated in the time domain has bdeansposed in the
frequency domain in order to deal with random Wilora problems. These formulations have the advantagbe
directly applicable after a spectral analysis andehproved to give accurate results and to produastic computer
saving. An important recent contribution in this@arwas made by Pitoiset and Preumont (2000). Mamgiaxial
failure criteria have been proposed through therdiure (Weber, 1999), however an optimisation ggsdnvolving
damage evaluations and also damage sensitivitysinalequires a computationally efficient and rigkdy accurate
criterion for damage assessment technique. Amoesgtleriteria, a frequency formulation of the Craxsdls damage
criterion has been chosen as damage assessmenigtechThe time domain approach of this criteri@rossland,
1956) based on a global approach has been validatedultiaxial periodic loads and appears to be ofithe most

widely used in high cycle fatigue.
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Design sensitivity analysis of structures deal$lite study of change in system response with oédpea design
variable variation. Sensitivity analysis is partarly useful in various domains of mechanical eegiting such as
parameter identification, reanalysis of modifiedustures, dynamic analysis of large structurestrobribrations and
structural optimisation with search direction. hist paper damage sensitivity is studied for stmestusubjected to
random excitations. The frequency formulation of @rossland’s damage criterion requires the cortipataf the
eigen solutions and random dynamic response oftiheture. So in order to evaluate the damage tsetiss the
determination of the eigen sensitivities and randtymamic response sensitivities are first needetraore precisely
the random stress spectral moment sensitivitiesbl®ms with light damping and distinct eigenvalaes considered
and by using spectral analysis properties an aidiormulation of damage sensitivities is preserdgedording to the
chosen frequency formulation of the Crossland’s agencriterion. The presented formulation assumes ftihe
excitations on all degrees of freedom of the syst@m ergodic and not correlated with each othevjngi
computationally efficient results. The presentethdge sensitivities will find their application ihi$ paper through an
optimisation process.

Indeed this work introduces a global optimisatitnategy for randomly excited linear elastic struetuwith damage
constraints, based on coupling stochastic and miétestic methods involving damage sensitivity asay We use a
general algorithm combining local search, randomiupleation and evolutionary iterations: a basiccées method is
modified by the adjunction of a suitable randomtyrdyation. Mathematical results of convergence beyound in the
literature (Souza de Curzi and Pogu, 1994 or Sdez&urzi and Autrique, 1997). Population basediwessleading to
evolutionary algorithms and associated convergenselts have also been introduced. The numericpéraxents
illustrate the determination of multiple solutioribe determination of minima lying on the boundafythe search
region, the resolution of problems involving a feundreds of unknowns. It is shown that the numepeaformance
can be improved by applying an efficient pure Iadrch to the results furnished by the evolutipadégorithm.

In the first part of the paper we set the problgatesnent and give the framework for stochasticfdet@stic
hybridisation. Then tools for evaluation of the straints and constraint gradients of the probleenraviewed: main
conclusions of the random dynamic theory for linggstem among which the definition of the randoresst spectral
moment are given and the frequency formulatiorhef@rossland’s damage criterion is detailed. Nexintroduce the
calculation of the spectral moment sensitivitiesiolwhwill be used for the calculation of the damaggmsitivities.
Finally the global optimisation process is appliech mechanical example. The influence of the patam involved in
the optimisation is discussed and conclusions iaeng

OPTIMISATION PROCESS

Problem statement
An optimisation problem usually reads as:

min f (X) o L
subjectto g;(x)<0 "’ : @
f.R">R is theobjective functiorto be minimised under ttfeasible domairmlefined by theonstraintsg; :R"—R;

x O R"is a vector of unknowns, referreddesign variablesExtensions to multiobjective optimisation mayfbend in
the literature but will not be considered here.

Usually, the aim of structural optimisation is tetekmine the best compromise between the perforenand the
cost of a structure. In this work, we consider ltest compromise between lightness and safetyolifective function
is the volumeV of the structure formed by a homogeneous matendlthe constraints correspond to a safe domain
associated to the Crossland’s failure criteriogytinvolve a damage evaluation on the whole stractiNe assume
that the three-dimensional structure is definecakihickness map:2 — R, where2 /7R is a mean surface or the
planar bottom of the structure. Such a problemolivas infinite dimensional function spaces: in artteobtain a finite
dimensional problem corresponding to the formutaiib), we introduce a finite element discretisatifrthe structure
involving a given mesh: the constraints are eveldiaat each element and omr= nel design variables are the
thicknesses, of the elements: we hawxeh=(hy, ..., he). This leads to the following mathematical problem:

nel

min V(h)=>"h, xs, subjectto: max D, < D, @)
h pry e=l,...,nel

whereh,, s; andD.are respectively the thickness, the surface anddheage, evaluated with the frequency formulation
of Crossland’s damage criterion, of the eleneft, is a predefined upper damage value.
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Optimisation method

Usually, an optimisation problem is numericallyvaa by descent iterations, which starts at anaihguess and
iteratively modify the actual valud® of the design variables in order to get a feasitrid more performant structure
defined by the design variable&™® = QX(h*) (k is the iteration number ar@ is the iteration function associated to the
method ). The constraints are usually treated ygusither a dual approach (such as Uzawa’s, fetairce) or penalty
methods. In this work, we shall consider a penaftgroach, where the problem defined by the eqgs(@pproached by:

mhin V, (h):nzz“eihexse+/]p(h) ; P(h)zéi{(De_DU)-l-;bs{De_Du )T "

Here,A > 0 is a parameter destined to be chosen large enteidghbe a solution of the eq. (2) ahglbe a solution
of the eq. (3). We have the inequalitig$,) < Vi(hy) <V, (h,) < V(h), for 7= A. Thus, the sequence of optimal volumes
is increasing, upper bounded by the optimal val(l®. It follows that, on the one hang&(h,)—0 and, on the other
hand, lim infV(h;) < lim supV(h,) < lim V,(h;) < V(h). Thus, any cluster point of the famity corresponds to a
solution of the eq. (2): it is expected that, e +o0, we get a solution of the eq. (2). In practick,is simplychosen
large enough.

The optimisation problem defined by the eq. (3)oimes also numerical difficulties connected tonitmconvexity:
under the lack of convexity assumptions, iteratiescent methods may converge to local minima andona global
minimiserh, . In order to prevent such an event, we use aidhybethod involving random perturbations of a desce
method: the standard descent iterations are mddifih*** = QX(h")+ /¥, where// is a convenient random variable.
Convergence results and convenient choice§‘ahay be found in the literature (Souza de Curzi Anttique, 1997).
We consider an evolutionary version of the randariysbations, analogous to the one introduced hy&ale Curzi
and Gongalves (2001). The standard descent metttbd gradient method, with a step determined bifé/éarule.

The optimisation procedure involves many computetiof the constraints but also of the constraiatigmts; here
the constraints have been defined as the damageadf element of the structure. Classical multiagiamage
assessment techniques usually produce high composts especially for randomly excited structurebpgms. This
results in prohibitive computational costs whenbglooptimisation considering damage is carried éladwever the
frequency formulation of the Crossland’'s damageeiian proposed by Pitoiset now allows to consitiés problem.
Moreover considering some assumptions, the evahmtf the damage gradients also appear to be ¢atignally
efficient so global optimisation considering damaga now be treated.

DAMAGE EVALUATION FOR RANDOMLY EXCITED STRUCTURES

Stress response PSD of structure subject to random loads

In this section only main conclusions are given ¢amnplete demonstration can be found in literafteirovitch,
1975). The finite element equation for a discreteation problem can be given as:

M X(t) + C x(t) + K x(t) = F(t) (4)

For a linear proportionally damped systeine.(C=aK+bM with a and b real positive scalar values), theitsmh of
equation (4) is sought ax(t) =u q(t) such that the mass normalised eigenvector matri{u; u, ... u,] satisfies:

Ku =M UuA withu™™Mu=I, (5)
and q(t) satisfies:
G O +2¢, 08, O +wfa, =) r=L2..n (6)
since
UKu=A= and u'Cu= .
(4)2 Zzna)n

n

where the subscriptis relative to theth mode anah is the number of evaluated mode.

It is assumed that the structure is subject to evimibise excitation of zero mean. A white noise esscis
characterized by a PSD with a constant value thraihg frequency range it has been defined, thusexo#@ation
spectral matrix does not depend @nThe extension to other form of PSD can be nuraByicreated by discretising
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this one into constant parts. Moreover we assuraettte white noise excitations on all degrees eédom are not
correlated to each othdDoing so the stress response PSD to a white ng@atonis defined as:

O, (w)=6"H(w) ®H (W)o C)
where H(w) and H'(») stand respectively for the frequency response fomstmatrix and its transposed complex
conjugate ands is the matrix of the power spectral density of ge@eralized forces(is the modal stress matrix).

A spectral analysis is carried out over a frequenaryge which usually results in a numesf calculated modes
must be sufficiently large to capture the dynanmimperties of the structure over the considereduieegy range. So by
using a subscripted notation the eq. (8) getsdha bf a summation over.

o, (W)=Y 000,99 H, @H. (@ ©)

1

with H, (w)=
r() w? —0®+2i 0o,

The zero and second order spectral momeft,aire obtained by integrating this expression ever

M@y (@)= DY 0,0, (r,s)f; H, (H (@) dw (108)
mz(%(@ﬁznzn:arasd)f (r,s)f @ H, (WH(0) dw (10b)

In these two expressions, the cross correlatiore(wh# s) can be neglected by considering distinct eigare/al
problems with light damping (Preumont, 1994). Wetke frequency range of interest for the sensytigalculation to
[-o0, +00], in order to further evaluate damage sensitigitily an analytical way. Hence the expressions efsgectral
moments can be reduced and written as functiottseodigen frequencies, the modal stresseslqras:

Mo(®0) =207 ¥y (1) x [ JHe (@) dw= D opx @i () 77 (11a)

My(P,) =D 07 XD (r,1) xJ‘iwz|Hr(w)|2dw: > o7 X (r,r) ><72Z “ (11b)

The frequency range and the considered number demact directly on the spectral moments valuesveier we
only want to get a change indicator in the fatidife® due to a parametrical modification and not exact value.
Consequently the chosen frequency range of intéoeshe damage sensitivity calculation is not #figant while the
taken frequency range remains the same for eaditisén calculation.

Frequency formulation of the Crossland’s damage cri terion

The Crossland’s damage criterion was initially fofated in the time domain by Crossland (1956)s Ibased on
the invariants of the stress tensor and on theatteng stress. The criterion assumes the structliability after a
periodT if the following inequality is satisfied at evepgpint of the structure:

o ramaxp) (12)

1) =
9(o(H),T) g

JJ24 IS the maximum amplitude of the second invaridrthe stress deviator and this expression is reliehe Von
Mises stress,(t) and its mean valug,by:

1
\ J 2a — E £t2¥‘ (o (t) - Ucm‘ (13)

p(t) is the hydrostatic pressure defined as a functiothe first invariant of the stress tensarand g are material
parameters function of endurance limits.

The frequency formulation proposed by Pitoiset @0@artly relies on the peak factor theory and barmapplied
directly after a spectral analysis as classicadisfgpmed in random vibration. Its application supgd that the structure
is linear and subjected to stationary Gaussianslafdero mean.
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Over an observation periodthe peak factor in our case allows to estimateettteeme value reach by a process
based on the Von Mises stresft) and the hydrostatic pressuyf), thus:

Ira =% Mo (@o(@) e (14)

maxp(t) = /My(P p(w)) 7 (15)

my(d.) andmy(Py,) are respectively the zero order spectral momerntiseo¥/on Mises stress PSD and of the hydrostatic
pressure PSD. The equivalent Von Mises stress BS@nd the PSD of the hydrostatic pressdrgw) can be
calculated from the PSD matriR,(w) of the stress vectar(t) and the procedure for the evaluation of these tésms
detailed by Segalman et al. (2000).

ne andy, stand for the peak factors of the P8iJw) and ®,(w). The mean of the process peak factor could be
approximated as a function of the process spettoahents by the following Davenport's expression@&gort, 1964):

F(N;) =y2In(N;) + 05777 /2In(N;) (16)

whereN; corresponds to the mean number of observed cgtideg the process during the peribdalculated as:

N =L (M@)o (17)
21\ my(®; ()
my(P;i(w)) is the second order spectral moment of the prodggs). The obtained value for the criterion can be

considered as the resulting damage after a pdriddhe relations between damage and expected fdifgueave been
widely treated during the last century and thegfagilife theory will not be developed in this paper

This frequency domain formulation appears to be maationally by far more efficient than the timenamin
formulation. Moreover this formulation can be exgsed as a function of spectral moments which isqoudarly well
suited to the damage sensitivity evaluation.

SENSITIVITY ANALYSIS

Random stress spectral moment sensitivity

In order to evaluate the random stress spectralenbsensitivities we need first to explain the frelgcy and mode
shape sensitivities. The finite element analysisiged to carry out the sensitivity analysis. Soiverg structure is
discretised and following the finite element methadlesign variablp of the studied structure is slightly modified.

Deriving the eq. (5), we obtained:

(18)
(K-Am) %y o [ K _, My,
op op op op
19)
Py (
U-rrM L+lu}ra_Mur =0
op 2 op
Then we can write:
ou oK oM
r _|on oM 20
K-AM -Mu | op|_ (ap A Dp]u' (20)
-ulM 0 9A 1 oM
Uy —u,
op 2 " op

The eigenpair sensitivities can be found by sohaag (20). Used for distinct or multiple eigenvaju®blem the
algorithm of the method is very simple, compact andherically stable. The evaluation of the eigenpansitivities is
carried out in a short time and only one modalysialis necessary.

From eq. (10a), (10b) and (20) the spectral momensitivity due to the variation of the design abtep is as
follows:

amO ((DO') - (213.)
a—p = ﬁp
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f,

s, _Z”:rraird)f (r,r) 90y 3o oy (r.r) 04 , no? i auk,

5 ax op 28,2 o F2 & (21b)
oMy (Ps) _ (22a)
~yp
op
- 710, ¢f (t,1) 90, _7moid(r,r) 04,  7of < (22b)
z 0 2 e 0 z ukr r
= p 28 1’ p gr |

Damage sensitivity

Assume that the material parameterand do not change for a design variable. We de@@®p (nelx1) the
damage change for the overall elements due toatation of thesth design variable:

olEly3.. ]) o(E[max p(t))

ap E ap ap (23)
1 oy @ @) FeN,) o dlfmo(® @) F(N,)
B3 ap B p

Only the first part of the equation is provided $ake of brevity but the second part can be trgdtitowing the same
way. Denotingny(®.(w))=my andmy(®@(®))=m,, we can write:

ol moas(Nc))za({;;_o) Hm)dm?%;“» (24)
olyme) _ 1 a(m,) (25)
o 2/m, p

G(F(Nc)):a(Nc)x 2In(N,) - 05772 (26)
op %® | 202N, (in(N,))2

o(m,)  a(mp)
AN T ™ ap ™ op

op 4 (mo)zv m, /Mg

The obtained distribution of the derivatives isatlely close to the exact distribution with crassrelations and
exact frequency range taking into account. Itsiappbn is computationally efficient because onheanodal analysis
is needed to compute any damage derivatives.

(27)

APPLICATION

We apply the optimisation process to a steel rggtiam plate with the following material properties:
E=2110""N/m?; p=7800kg/m? v =03

The dimensions of the plate are 2.5mx3.5m withnétial thicknessh uniform set to 5mm. We arbitrarily set, to 0.8.
The plate is supposed simply fixed on its four edgene endurance limits for the reversed tensimsstand torsion
stresd ; andt ; are stated after 2.ichIes as:

f_, =252MPa; t, =182MPa

The plate is modelled by 36 eight-node square asnghich produce no out-of-plane stress so theedgiond of the
problem is equal to 36. The structure is subjet¢ted random load defined by a band limited whités@grocess
(Figure 1), with®g,the PSD (constant) of the band limited white barmtess. The frequency range of interest is then
set to [0, 1050] (Hz) and only the first mode isnputed to capture the dynamic properties of thectire over the
frequency range, according to the Modal ParticgpaEactors (Géradin and Rixen,1998).
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Figure 1 — Initial design of the plate

We denoten the number of iterations, amlr andt are parameters usually used in evolutionary opttion, they
correspond respectively to the size of the popaatine number of recombinations and the numbenuthtions. The
parameterA is set to 1000. Mathematical results have shown ithareasing the values of these parameters will
statistically lead to an improved solution. Herenauical experiments are carried out varying thesapeters. Due to
the random nature of the perturbations involvethaprocess the obtained solutions slightly vaoyideally a number
of runs would have to be carried out and a stasisitudy (mean and variance) leaded over the rdtaiesults. Indeed
even for this simple application, it is not possitb completely explore the optimisation strategg tb computational
costs involved with the mechanical problem. Thatliy only one run is carried for each numericalesikpent and we
consider the result close to the expected mearitré8a denoten: andng the number of evaluations of the objective
function and the number of evaluations of the deisecaethod.f,, and gnax stand for the sum ofi and for the
corresponding maximum damage of the optimized sirac We illustrate the influence of the numbemaitations,
recombinations, iterations in the tables 1, 2, @ tie influence of the size of the population ie thble 4.

Table 1 — Results furnished for different numbers o f mutation for N=25,p=5,r=10

t 0 10 50 100 500
fopt (MM 0.063 0.059 0.058 0.059 0.057
Omax 0.800 0.800 0.799 0.800 0.800
Cpu(s) 10308 13332 29680 36439 158000
Ng 530 16400 6030 28030 138030
Ng 1375 1375 1375 1375 1375
Table 2 — Results furnished for different numbers o f recombination for N=25,p=5,t=10
R 0 10 20 50 100
fopt (MM 0.073 0.059 0.059 0.058 0.058
Omax 0.800 0.800 0.800 0.799 0.794
Cpu(s) 146 13332 26286 61412 127790
Ng 1155 16400 31380 76380 151400
No 105 1375 2625 6375 12625
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Table 3 — Results furnished for different numbers o

fiteration for p=5,r=10,t=10

n 1 5 10 25 50
fopt (MM 1.404 0.068 0.065 0.059 0.060
Omax 0.436 0.797 0.799 0.800 0.800
Cpu(s) 192 1415 3255 13332 22784
Ng 660 3280 6555 16400 32755
Ng 55 1375 550 1375 2750
Table 4 — Results furnished for different sizes of population for N=25,r =10,t=10
p 1 5 10 20 50
fopt (MM 0.062 0.059 0.059 0.057 0.059
Omas 0.800 0.800 0.799 0.799 0.799
Cpu(s) 3353 13332 26618 54881 128770
Ne 3280 16400 32800 65600 164000
Ng 275 1375 2750 5500 13750

Compared to optimisation scheme without randomupleation, the chosen optimisation method has sstadés
improved the results (see table 2 the results witltiecombination). As expected increasing the patars values
improves the results, but also increases consifletiad computational costs. Thus the initial parserevalues should
be a good compromise between computational costemudt accuracy. However if we want to increagedize of the
problem, we will have to increase also the parammetalues. So the considered optimisation methpdlexpto problem
with damage constraints seems to be only adaptegatdblem with a low number of design variables.

We now illustrate the influence of the initial tkitess when starting the optimisation process inahke 5. We keep
the predefined value = 25,p = 5,r = 10 and = 10.

Table 5 — Results furnished for different initial t hicknesses

Case a) b) c) d) e)
fopt (MM) 0.075 0.066 0.061 0.068 0.096
Omax 0.799 0.797 0.800 0.800 0.799

h=3mm

h=5mm
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B
e) h (mm)

Figure 2 — Initial thickness cases

For uniform initial thickness we have obtainkggl = 0.0587. The obtained results (Table 5) show thatinitial
thickness has a great influence on the given swluffhus particular attention should be given ® ithitial design
variables when considering the number of recomlzinatand mutations and also the size of the papulédw.

Over the experiments the one with the followinggmaetersn = 25,p = 20,r = 10 and = 10 has leaded to the best
resultf,y = 0.057. The figure 3 shows the correspondinginbthdesign.

o8 1 12 14 16 18 2 22 24 2B
h ()

Figure 3 — Best optimal design obtained with for N=25p=20r=10t=10

CONCLUSION

This paper deals with the optimisation of randomkgited structures. Optimum is stated here as amim mass
objective for a given, prescribed, damage. An eimhary based optimisation procedure is chosemimwork for its



Global optimisation of randomly excited structures with damage constraints.

global minimum search capacity. An essential featfrthis procedure concerns the coupling betwéechastic and
deterministic strategies involved in the optimisatimethod: local search, random perturbation ammlugenary

concepts are combined adjoining a suitable randenmugbation to a basic descent method. Then, tkaltheg

optimisation algorithm, which used sensitivities|@ss computationally expensive than purely stetadhanes, allowing
to be applied to mechanical problems.

The second feature of this work, essential to tnecass of the proposed methodology, concerns theegure
defined to evaluate the damage in structures sutgjgandom loads: this procedure is based on bhswigkd frequency
formulation of the Crossland's damage criteriodpwahg a highly computational efficient evaluatioof the
optimisation constraint. Moreover the sensitivit@mstraints evaluation through the use of thegmesl method for
the evaluation of the damage gradients has madegltil optimisation process considering damagsilié= with
reasonable computational costs. Indeed althoughadaraensitivity numbers are estimated for eaclefigiement of
the problem, the estimation is computationallyciéfint because only one modal analysis is needebtton the overall
sensitivity numbers. To demonstrate the viabilifysach a methodology, an application to a platbaadled on a
personal computer. Even for this simple applicatibis not possible to completely explore the ojsation strategy
due to computational costs involved with the medwnproblem. However, a good compromise between
computational cost and result accuracy has beegrrdigted, showing that interesting results couldobgained by
iterating the algorithm: due to the probability cepts involved in the stochastic search combinetig¢adeterministic
strategy used, the optimisation algorithm shouldagts give the minimum obtained with a basic detaistic method
(at least in the worst case) and a better solutiith some chance or supplementary iterations. ©hsn advantage
from an engineer point of view, ensuring to havéeast one good solution, and possibly a betteribcemputational
time is allowed
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