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Abstract: In advanced structural dynamics coupled systeitis bounded nonlinear members on the one side of the
coupling interface and with unbounded linear elastic mersloa the other side are characterized by wave propagation
and thus radiation damping. In this paper the dynamic sgfor infinite beams in the frequency-domain is transfdrme
into the time-domain using a rational approximation anddeling the mixed-variables formulation. Showing this
process for Euler-Bernoulli's model and Timoshenko’s sheadel indicates significant differences with respect to

analytical and numerical aspects.

NOMENCLATURE

F = external force amplitudéN]

M = external moment amplitudg\im

Q = shear force|N]

w = vertical displacementfm|

f = force vector

d = deformation vector

K = dynamic stiffness matrix

El = flexural stiffness|N ]

A= cross-sectional arefy?]

G = shear modulugN/n?]

g = distibuted vertical loadN/m|

m = distributed momen{Nm/m|

i = imaginary unit

a = real part of complex number

b = imaginary part of complex number
¢ = wave propagation speef/s|

r = radius,[m|

x = coordinate[m|

t =time,[g

Kg = vertical stiffness[N/m|

Km = rotational stiffnessjNm|

D = rotational damping coefficienfiNg
M = degree of rational approximation
| = number of data points involved in
least-squares procedure

Pj, p; = numerator coefficients of ratio-
nal function,j =0---M -1

INTRODUCTION

Qj. g; = denominator coefficients of
rational function,j =1---M

Er = vertical error norm

Em = rotational error norm

vj = internal variablesj = 1---M

S0, S1 = coefficients of linear representa-
tion

r = numerator polynomial of strictly
proper remainder

A, B = matrices of resulting system of
first-order differential equations

z = state variables

r = right-hand side vector

n = integer number related to degree of
fractional differentiation

ip = initial momentum/Nmg

h = time step size[s]

K = stiffness of rotational springiNm

Greek Symbols

v = Poisson’s ratio

K = shear coefficient

¢ = angle of rotation

y = shear angle

p = mass densitykg/m°]
U = mass per lengthkg/m|

Keywords: radiation damping, dynamic stiffness approximation, Timoshenko beam, Euler-Bernoulli beam

B = distributed stiffnesgN/n?]

A = square of wave number

w = excitation frequency1/s|

@ = cutoff frequency[1/g]

Aw = frequency incrementl/s|

n = dimensionless frequency (Timo-
shenko beam)

fi = dimensionless cutoff frequency
(Timoshenko beam)

6 = dimensionless frequency (Euler-
Bernoulli beam)

a = degree of fractional derivative

T =time,[g

Subscripts

T =translational properties

R = rotational properties

TS = translation + effect of distributed
stiffness

F = with respect to force

M = with respect to moment

Superscripts

o = asymptoticw — infinity

(i) = step of successive splitting
procedurej=1---M -1

Wave propagation and thus radiation damping plays a keyma&uctural dynamics with infinite members like soil,
fluid, air or a concrete track of railways. In this contexg torrect description of radiation damping is still a chadje.
Conventional finite element models cause reflections ofamntpwaves at artificial boundaries which have to be prevkente
by special measures. Summaries of such absorbing or traimgrboundaries can be found in (Wolf, 1986), (Kausel,
1988) and (Givoli, 1999). A well established method for thalgsis of dynamic problems including unbounded media is
the boundary element method (Beskos, 1987; Beskos, 19@rg, Hhe radiation condition is fulfilled by the fundamental
solution explicitly. However, the numerical evaluationtbé corresponding dynamic stiffness in the frequency-doma
is a rather troublesome process and the transformatiornthietéime-domain involving convolution is computationally
expensive. The idea of extending the finite element meshrtsaiafinity has driven the development of infinite element
techniques (Bettess, 1992). Although this method is wédltshed in acoustics (Harari, 2006), only few applicasito
elastodynamic problems can be found in the literature.
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Figure 1 — Infinite Timoshenko beam. Definition of forces and deforma tions

A relatively recent method particularly suitable for themarical solution of dynamic problems involving unbounded
domains is the scaled boundary finite element method (SBFEM$ procedure has been developed within the last ten
years by Wolf and Song (Song and Wolf, 1997; Wolf, 2003). TBEEM is based on the use of scaled coordinates which
allow the governing formulations to be discretized in thewinferential directions. The resulting ordinary diffetiel
equations for the dynamic stiffness or displacements \eispect to the radial coordinate can then be solved in clfised-
in the frequency-domain.

For infinite beams such ODEs in the space-domain appear i@, phieir solution in the frequency-space-domain can
be formulated analytically and the transformation into tih@e-domain can be organized without convolution using the
'mixed-variables technique’ developed by Ruge and co-ex@KRuge, Trinks and Witte, 2001). Time-domain formu-
lations should be able to describe the reaction of a strectuen for transient excitations like impacts or start-ups a
shut-downs of rotors. These are inputs with a frequencyernthich tends towards infinity. Consequently, the formula
tion in the frequency-domain should contain the asymptmgicaviour forw tending towards infinity. Thus, the dynamic
analysis of infinite beam problems should use such mechanmaels which are able to describe vibrations in the high-
frequency range. For this purpose, Timoshenko’s beam yheanore appropriate than Euler-Bernoulli's model as is
shown in classical textbooks like (Fung, 1986). In addititve asymptotic behaviour of Timoshenko’s beam turns out
to behave linear with respect tow), whereas Euler-Bernoulli's model shows rational poweks in)%, (iw)% which
correspond to fractional derivatives in the time-domamadldition to (Ruge and Birk, 2007), this contribution camsa
a comprehensive derivation of the dynamic stiffness maitfikgeams bedded on a Winkler foundation. The asymptotic
behaviour is addressed and the mixed-variables techréquarimarized. The resulting state equations in the timeadom
are discussed with respect to their numerical solution bgllor non-local solvers and finally typical results are preed.

INFINITE TIMOSHENKO BEAM

The dynamic behaviour of an infinite Timoshenko beam as shiowig. 1 is described and solved in the frequency-
domain and used in order to formulate the dynamic stiffnelsgionship,

{5}:K(iw){\g}, f=Kd, ft)=Ff-*, d(t)=d e, (1)

between the deformatiomsand the generalized forcén the point wheré(t) acts onto the beam. If shear deformations
are included, the slope of the deflection cuw(e) depends not only on the rotatignof the beam cross-section but also
on the shear anglg

7}
E(W(X’t) = —¢(X,t)—y(X,t). (2

Bending momenk(x,t) and shear forc€(x,t) are related to the corresponding deformations,
M(x,t) = Eli(p(x t)
) - dX ) )

Q(x,t) = —KGAy = KGA | d (x,1) + %W(X,t) , 3)

whereEl is the flexural stiffnessA the cross-sectional are&, the shear modulus froe = 2G(1+ v) with Poisson’s
ratio v, andk is the shear coefficientx depends on the shape of the cross-section, Poisson’s ratitha considered
frequency range. For circles, rectangles and thin-walfedszsections, Cowper (Cowper, 1966) gave several rekatio
For high-frequency modes, values published by Mindlin (@fiim and Deresiewicz, 1953) should be considered. The
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elasticity equations (3) are coupled with the dynamic élgpiilm concerning the forces and the moments,

2
2 QUi+ axt) - Bwxt) = pA S wixt), @
iM(xt)—Q(xt)+m(xt)— Ia—zdz(xt) (%)
0X ) ) ) _p 0t2 ) )

wherep [kg/m?] is the mass density per volumiethe moment of inertia about theaxis through the centre of the cross-
section,q(x,t) [N/m] is the prescribed distributed load on the bean(x,t) [Nm/m| the prescribed distributed moment
along the beam an@[N/n?] the distributed stiffness.

The constitutive relations (3) together with the equatiohsotion (4), (5) define the governing differential equato
for the displacements(x,t) and the rotatio (x,t) :

—KGA( x +Wxx) + BW+ pAWy =,

KGA(¢ +Wx) —Elpxx+pld =m. (6)
A wave-type representation
w(X,t) W /At ;
= € , S=iw, 7
von =14 ] @

solves the homogeneous part of Egs. (6) yielding a quadegtiation for the roota:

StMr+SMrp  Myp(Mr+Sr)
AZ—2 + =0. 8
SR SR ©)
The new parameters are related to rotatigiRland translationalT ) properties.
_ _ 2 _ kG i
St = KGA  Myg = pAS+B, & = >, s=iw, ©
%X = EI Mg = pls? & = %

Introducing a dimensionless frequengy

2 2
2_ W Sr w N2 2.2 B
N=r—~=2> — $=(w’=-n*, (10)
(8 #4 -
simplifies the formulation of the roofs, A, of the characteristic equation (8):
_1B 2 G (2
)\1,2—281_[(1 '7)+c§( n i\/ﬁ) , (11)
ASr {cﬁ 2 } ’
R=4———= -1+ |5 (1- + 12
r (n“-1) 2 (1-n%)+n 12)
The special valug? = 1 (first cut-off frequency) is related to one zero eigenvalue
1B ¢ B B
Mo=-— T (-141), M=———T=—2— A=0 13
12 ZSrcEe( ), M1 52 a2 (13)
A second situation witiA, = 0 for taking the plus sign in equation (11) follows from
2
(1-A)+3 (-A%+VR) =0, (14)
CR
which leads to AS
4T?(f’2*1) =4i?(f%-1), (15)
and thus AS
I B
o B Sr GA A
~ ~ K
Of=_x &= =7 =47 (17)
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The second cut-off frequencglp, is the same as for an infinite Timoshenko beam without anielastraint3. As the
solution (7) in the space-domain is relatec\d, a change of the sign of a real valdg < R influences the character of
the solution significantly. Altogether, the propertiesigf A, with respect to the cut-off frequenciés, &, are as follows:

W < Ap=axib; abeR
w= ¢ Mn=-L£. A =0
~ B - KGA . @1 . ! EA 2
W = ﬁ’ W = 7; W< W< oy AL, A2€R; A1 <0, A2>0. (18)
w= &y AMER, A1<0, Ax=0.
w> Wy AM,A2€R; A1 <0, Ax<O.

With the help ofA1, A, the normalized deformatiowe (r) for a unit forceF = 1[N] atr = 0,r = v/%2, and the nor-
malized rotationpy (r) for a unit momenM = 1[Nm atr = 0 can be described usingdHnander’s theorem @tmander,
1963), elaborated by Antes (Antes, Schanz and Alvermardy)20

! eV S+MR) e VR [ Sr+Mg
WF‘stul—w[ e Te) - (-2 )
B 1 eV Mrg\ e VA Mr
"’MzsR(Al—Az)[ () n (e) 0

Due toKg = VEV andKy = M at the point =0 whereF andM act onto the beam, the stiffnesdgs, Ky follow directly
from the solutions (19) and (20), respectively .

oot 2Sr (A1 — A2) VAT 1)
We (r = 0) \//\72<)\175T;MR)7\//\71()\275T;MR)3
oL 25 (A1 — A2) VATAD 22)

=0 ) e )

Below the first critical frequencyy; both stiffnesseg and Ky are purely real-valued and indicate properties of a
corresponding frequency-dependent spring. Above thensecitical frequencyi, the stiffnesses are purely imaginary
and indicate radiation damping which can be described byhataat damping coefficient wheatends towards infinity.

al)im KF:K,‘?:ZC—-iw:ZA\/KGp-iw, (23)

—> 00 T

al)im KM:K,‘\’A":ZC—l~iw:2I\/Ep~iw. (24)
)— 00 R

For the rotational degree of freedom, the relationship $oails damping with the corresponding moment,

M(t) =Dg(t), (25)
in the time-domain follows directly from the assumption dfrae-harmonic behaviour of both quantitigsgt) as well as
M(t):

M(t) =M-9;  o(t)=¢ €. (26)
Thus, Eqg. (25) in the time-domain corresponds to

M=iw-D¢ (27)

in the frequency domain. Comparing Egs. (23) and (27) yieldsnstant damping coefficiebt= 2l ,/Ep in case of the
rotational stiffness fotw tending towards infinity.

Frequency-to-time transformation

The dynamic stiffnesses given in Egs. (21) and (22) comigletescribe the relationship between a point load or
moment, respectively and the resulting deformationg :at0 in the frequency-domain. However, for the analysis of
transient dynamic problems, a direct time-domain modeksirdble. In the preceding section it has been shown that
Egs. (21) and (22) can be interpreted as simple dampers itinleedomain for infinitely large excitation frequencies.
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However, in general the stiffness formulations for the Témenko beam in the frequency-domain are rather complicated
functions of the frequency:

F =Ke (i)W =KEW+ (Kg — KE)W, K,‘;’:iwzcﬁ; (28)
T

. . 2

M =Ku(iw)$ =Ky + (Kn —Ky)d, Km=lw§- (29)

Only the asymptotic part€™ are simple linear functions with respect to]. The so-called low-frequency paks— K®
must tend towards zero feo tending towards infinity.

The frequency-to-time transformation of the Eqs. (28-29dne in steps according to recent publications (Ruge,
Trinks and Witte, 2001; Trinks, 2004)

Step 1 Rational approximation of low-frequency paks- K*:

e P (P44 ([(0M A1 Pliw)
S T W+ (@"Qu Qliw)’ 0
o Po+({wpi+-+ (0" tpy_1  pliw)
T a0 aiw)’ ey
The coefficientd}, Q; andpj,q; are found by minimizing the error-norns, Ew:
Er = ||(Kr —Kg) — Piw)/Qliw)]l;
Enm = [|(Ku —Kp) = p(iw)/d(iw)]], (32)

using an amount df+ 1 distinct valuesv; = jAw, j =1,...,1 with a frequency incremefw.

Step 2 Replacement of the fractiop/q by a new state variable; and changing from proper fractiop/q to
improper fractiorg/p (shown only forKy):

M = (iwﬁ*) ¢+,
g = PW 55 W)

 qiw) p(iw)
Vv, : first internal variable (33)

Step 3 Splitting of g/ p into a linear part with respect fov and a strictly proper remainder:

(0) rO%iw) rO9w)

% =95 +iws(lo) + i@’ piw) proper fraction (34)
¢ = (s +iws?)0 + 7, (35)
. 0 P p . .

) = Tvl — V= r(—o)vz, 0 : improper fraction (36)
V2 : second internal variahle (37)

Further steps  Continuation of step 3 until the process ends up with a lasali part without an additional fraction.

Finally, a strictly linear representation with respectdowith M additional internal variables is obtained:

(A+iwB)2="F, (38)
0o 1 o0 0 i
M
1 - 1 0 \? 0
1
1 ~
A=|0 -1 Sg) 0 . 2= Vo , = 0 : (39)
0 0 1 4" Um 0
Bdiag{ ZCiR P (S } (40)
R
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Assuming a harmonic behaviour of the state variables,

2(t) =2- 9, r(t)=F-*, (41)
Eqg. (38) corresponds to a first-order differential equatigth respect to time:
Az(t) +Bz(t) =r(t). (42)

This ODE can be coupled to additional structural membems(&ith nonlinear behaviour) and solved in the time-domain
with standard numerical time-stepping schemes.

INFINITE EULER-BERNOULLI BEAM
The governing differential equation, here with an addiiogiastic Winkler foundatiof [N/nv],

E IW,XXXX()(vt) + BW(th) + pAth (X7t) - 07 (43)

is solved by exponential functiongx,t) = We'*d“t. The dynamic stiffnessaé: andKy are derived in Ruge and Trinks
(2003).

Kr = 8EIWS, (44)
Ky = 4EIW, (45)
R LA e (46)
2VElI | (1+i)vV62—-1  for6?>1. B

For 3 — 0 these values change into rational powers of the frequdRiegeé and Trinks, 2004):
Ke = 2V/2EICH (iw)?, (47)
K = 2V2EICH (iw)Z, cz%/?. (48)

Frequency-to-time transformation
The harmonic behaviour

dxt) = [ ‘2’&8 ] - [ ‘z’gg } dor, gt—id(xﬂ) — (iw)7d(x,1), (49)

can be used to turn over from the frequency-domain desonipt{47), (48) for the infinite Euler-Bernoulli beam into the
time domain.

F=KeWw, M=Ky,
3
F(t) = 2V2EICE {thzw(t)] : (50)
1
M(t) = 2v/2EICH [th?w(t)] . (51)
Here, noninteger powers ¢ifw) have been interpreted as fractional derivatives of the owkisz(t). This is based on the

so—called Riemann-Liouville definition (52) of fractiordifferentiation which can be found in the textbook (Podibn
1999), for example.

1 dan d(1)
ad = — —1<a<n.
abDy d Fn—a) am /a ((— i dr, n—-1<a<n (52)

In Eg. (52),nis an integer number. Application of definition (52) using tbwer terminab = — to a harmonic function
returns the latter together with a fac(@w)?.

_Df explict) = (i) explict). (53)

However, if the quantitied between(t — —) andt = 0, where the system starts to exist, are identically zeen the
lower limit of the integral in Eq. (52) can be replaced by 0.

dt)=0 for —o<t<O. (54)
1 d" gt d(1)
- osDd= ——1" - [/ 7 —1<a<n.
_e D{'d F(n—a)dt”/o (t_T)aandr, n—-1<a<n

Thus, the approach presented in this paper is limited tatsitns with zero initial conditions for the displacementsl a
rotations. An initial momentuniy [kgn?s~1] can be modelled by applying a constant moment within a veoytshme
interval h:ig = Mh.
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EXAMPLE

In order to illustrate the differences between the Timokbesnd Euler-Bernoulli beam models the specific system
shown in Fig. 2 with the material data given in Eq. (55) hasteesalysed.

E=21-10"[N/n?], 1=2073[cnf], v=03, (55)
A=6948[mnf|, p=pA=545kg/m, Kk=-.
Here, the distributed stiffness is replaced by a sing|dtiartal spring of stiffnes& = 1.6-10’ Nmatx = 0. The rotational

(M

Figure 2 — Infinite beam supported by a single spring at x=0.

dynamic stiffness derived for the Timoshenko and EulemBali beam in Egs. (22) and (48), respectively is shown
in Fig. 3. As described above, the real part of the dynamfiness of the Timoshenko beam vanishes for excitation

frequencies bigger thad, with:
o— %A 5350782,
pl S

This is not the case for the Euler-Bernoulli beam. The redliamaginary part of the latter are identical. The rotational
dynamic stiffnesses corresponding to the two differentbe@dels agree reasonably only for small frequencies, appro
imately w < 10000%. However, the stiffness curves differ strongly for largeitation frequencies. The linear asymptote
of the imaginary part of the Timoshenko beam is also showngn¥: It can be seen, that Eq. (22) approaches the latter,
whereas both the imaginary and real parKgf corresponding to the Euler-Bernoulli model follow a squaret function

of w.

In order to obtain a time-domain model, the low-frequenay pathe rotational dynamic stiffness of the Timoshenko
beam is approximated by the ratio of two polynomials (Eq.) 3% described above. The agreement between the exact
low-frequency vertical dynamic stiffness coefficient aational approximations of degréé¢ =5 andM = 9 is shown
in Fig. 4. Using the rational stiffness approximation, tbéation at the point of excitation of the coupled beam-gprin
system shown in Fig. 2 is described by the following systeiirsi-order differential equations:

Az(t) +B(t) = r (), (56)
with
1 -1 ... F1 *
A=tridiag| K —g? &Y ... &M |, (57)
* 1 -1 ... F1

Here, the rotational spring stiffnekshas been included at the position (1,1) of the maiixThe vector of unknowns,
right-hand side vectar and the matriXB are identical to that given in Eqs. (39) and (40), respelstivdsing Eq. (56),
the rotationg (x = 0,t) due to a transient unit-impulse momentum,

h
io:/o M(t)dt = 1.0[Nm-g, (58)

acting within the time-intervall & t < h has been computed. The numerical results correspondindfecedt degrees
of rational approximation are shown in Fig. 5. Although #hex no analytical solution available, it can be seen, that th
numerical solutions are approaching each other for inargakegree of approximatios.

According to the preceding section, Eq. (51), the couplekEBernoulli beam-spring system is described by the
following fractional differential equation in the time-ahain:

_pA

K- (t) +2V2EICE [,MD%(p(t)] =M(t), C=5 (59)

Eqg. (59) has also been solved numerically for a harmonidabian,

. - 1
M(t)=McosQt, M=1.0-1°Nm Q= 20000, (60)
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Rotation ¢ [10'4 m]

0.4 0.6
Time t [10'3 s]

Figure 5 — Timoshenko beam supported by a single rotational spring
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using a specific time-stepping scheme developed for fraatidifferential equations (Trinks, 2004; Ruge and Wagner,
1999). The resulting rotatios(x = 0,t) at the point of excitation of the Euler-Bernoulli beam is qared to that

of the Timoshenko beam in Fig. 6. It can be seen that the Bdenoulli model leads to smaller rotations in this
specific situation. Moreover, a phase shift is visible in.Fég However, the numerically obtained displacement curves
corresponding to the two different beam models are simdasgpite the big differences with respect to the dynamic
stiffness.

CONCLUSIONS

Effects from shear deformations are well-known in struaitgtatics. However, even if they are not significant from a
mechanical point of view, they can improve the performarf¢hediscretization scheme as is known from mixed methods
in finite-element concepts in statics (Zienkiewicz and dayl994).

In structural dynamics of infinite domains the benefit fronmgsTimoshenko’s model is even greater: including the
asymptotic behaviour in the formulation in the frequenoyr@in shows a linear dependency with respectitand thus
corresponds to a first-order time-derivative. Consequgethik solution in the time-domain can be done by classioa i
solvers with local properties. Contrary to shear modelde=Bernoulli's theory generates rational powerd @fin the
frequency-domain and therefore fractional derivativethantime-domain which ask for non-local time-solvers.
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