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Abstract. This paper reports on a series of numerical simulations of laminar flows over two-
dimensional cavities. Five different aspect ratios, ranging from [1:9.6] to [1:28], were
considered. The calculations pointed out that for the aspect ratios studied the flow topology
was sensitive to this parameter. The aspect ratio plays a direct influence upon the number and
the position of the flow vortices inside the laminar cavity. The numerical results were very
sensitive to the inlet velocity profile, which is closely related to be boundary layer thickness
upstream of the cavity. The SIMPLER numerical algorithm developed by Patankar was used
to solve the discrete equations on a staggered grid. The interpolation functions are based
upon the power law scheme.
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1 INTRODUCTION
The flow over cavities is of great interest as it is related to various engineering

applications. Aung (1983) found, experimentally, that for laminar forced convection, the local
heat transfer distribution on the cavity floor has a maximum value located between the
midpoint of the cavity floor and the downstream wall. Bhath and Aung (1984) numerically
simulated the 2-D, laminar flow over cavities and showed that the heat transfer inside a cavity
is a function of its aspect ratio. Pereira and Sousa (1995) studied both numerically and
experimentally the unsteady flow inside cavities. The present authors’ interest in such flows is
due to their research related to the flow over solar energy collectors. As it is well known in the
literature, such devices loose energy to the ambient around it mainly by forced convection due
to the wind blowing over its upper surface. The film coefficient is directly related to the wind
velocity impinging over the solar collector. The use a wind barrier around the collector
perimeter will create a re-circulation region on it’s surface, as seen in Fig. 1, diminishing the
wind velocity and, consequently the heat transfer film coefficient and the heat loss.

Figure 1: – Sketch of the flow over a solar collector with wind barrier.
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The resemblance of such flow to the ones over cavities motivated this work. In order
to prepare for the evaluation of the heat transfer from the bottom of the cavity, which
represents the collector main body, the isolated fluid mechanics problem will be solved first.
The present effort is, therefore, related to numerical analysis of laminar flows over cavities.
This is the first stage towards the final simulation of the turbulent heat transfer problem. Up to
this point the following influences upon the topology and flow along the cavity were
investigated by the authors: (i) Type of velocity profile of the flow approaching the cavity; (ii)
Inlet Reynolds number, based on the cavity depth; (iii) Cavity aspect ratio. One might argue
that the presence of the wind barrier might impact the oncoming flow by creating a re-
circulation zone that does not appear in flows over shallow cavities. Nevertheless, a good
understanding of flows over cavities is an important phase of the present research effort.

Sinha et al (1982) made an experimental study of the flow over cavities of various
aspect ratios. In their work these authors classified the cavity as open or closed based upon the
number of re-circulating bubbles and the position that they occupy inside the cavity. Their
results are used in the present work as one of the code validation tests. Prior to use the code
for the simulation of the laminar flow over cavities other validation cases were computed,
namely: the laminar flows over a flat plate and over a backward-facing step.

2. THEORETICAL FORMULATION AND NUMERICAL METHOD
The mathematical model here considered are the two-dimensional, incompressible,

Navier-Stokes equations written for a Cartesian coordinate frame. The partial differential
equations are solved numerically by a finite volume algorithm, called SIMPLER (Patankar,
1980), on a staggered Cartesian mesh. The convective and diffusive fluxes are calculated at
the volumes’ interfaces with the power-law interpolation scheme. The SIMPLER algorithm is
a semi-implicit method. The iteration procedure starts with an arbitrary velocity field from
which results a pressure distribution. After the pressure field is calculated a new velocity
distribution is obtained from the momentum equations. The improved velocity field is used to
solve the pressure equation. The process is repeated until convergence is obtained.

2.1 Boundary Conditions. At the solid walls the non-slip boundary conditions are enforced,
that is, u = v = zero. At the upper boundary as well as at the exit section a parabolic type of
boundary condition is used. This is equivalent to saying that the property gradients at these
boundaries are zero. A parabolic boundary condition is interesting in the sense that it is non-
reflexive. In other words, no spurious perturbation is reflected back into the computational
domain. Finally, at the entrance plane two different velocity profiles were experimented,
namely: a uniform one and a Blasius laminar boundary layer profile. As expected, the choice
of the velocity distribution at the inlet plane has a direct influence on the boundary layer
thickness at the separation point and, consequently, on the flow properties inside the cavity.
Figure 2 displays the problem geometry.

Figure 2: Problem geometry and nomenclature.
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3. CODE VALIDATION
To validate the numerical code classical test cases were solved. The well-known

Blasius profile was reproduced for the flat plate. The velocity u is nondimensionalized by the
undisturbed velocity u∞. The dimensionless coordinate normal to the wall is the Blasius
variable, η (see Fig. 3).
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Figure 3: Comparison of the numerical solution for laminar flow and the exact profile.

Another very interesting geometry to validate numerical codes is the backward-facing
step. The reattachment length calculated compared well with the experimental and
computational values reported by Fletcher (1988) as can be observed in Fig. 4.
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Figure 4: Non-dimensional reattachment length, x/h, as function of the Reynolds number
based on the step height, h.



4. COMPUTATIONAL GRID
A typical computational grid is shown in Fig. 5. The inlet boundary is located at four

cavity depths, 4s, upstream of the separation point. The outlet boundary is at a distance of 6.8
s from the downstream wall. In spite of the parabolic character of the upper boundary,
numerical experiments showed that a minimum of 10s was necessary in order to avoid
spurious interference on the numerical solution. The grid was refined close to the wall and to
the cavity entrance and exit planes. Figure 5(b) shows a close-up of the grid at the separation
point. The computational domain is sub-divided by an orthogonal, non-uniform mesh. Grid
points are clustered near the walls and at regions where the strongest gradients are expected.
The stretching factor used in both directions is never greater than 1.10 in order to minimize
numerical errors. The exception was the longer cavity because otherwise a prohibitive number
of points would be necessary.
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Figure 5: Typical computational grid.

5. RESULTS
The results obtained focus on three important aspects of the simulation of flows over

cavities. These are the influence of the incoming velocity profile, of the cavity aspect ratio
and of the Reynolds number upon the flow topology and the flow overall characteristics.

Influence of the inlet velocity profile.  In order to assess the influence of the inlet
velocity profile upon the flow, the following geometry and physical characteristics were
considered: (i) Aspect ratio [1:28]; being the cavity depth equal to 0.625 cm; (ii) Inlet free-
stream velocity, smU /8.1=∞ ; (iii) Reynolds number based upon the cavity depth, Res= 662.
These values were considered because there was experimental data available (Sinha et al,
1982).

Many numerical experiments were done; the most representatives are shown in Fig. 6.
The reader can observe the plot of the pressure coefficient, cp, along the cavity floor for three
different cases: (a) Uniform profile at the entrance section located at a distance of four cavity
depths, 4s, upstream of the separation point; (b) A Blasius profile, at the same entrance plane,
such that the boundary layer thickness, δ, is equal to 0.54 cm at the upstream wall station; (c)



A Blasius profile, at the same distance 4s upstream of the first corner, such that δ= 1.4 cm at
the upstream wall station. Case (c) is the one that gave the best cp distribution when compared
with the experimental data. This is confirmed by Fig. 7, where the numerical and
experimental pressure distributions are compared for the same geometry and flow conditions
mentioned above [case (c)]. Therefore all cases that are reported hereafter, independently of
the specific conditions, tries to mimic case (c) above.

The important point here is related to the boundary layer thickness at the upstream
corner of the cavity – the main separation point. Case (c) above reproduces the experimental
value of δ= 1.4 cm at this station with great accuracy. On the other hand, case (a) and (b) give
values of δ that deviate considerably from the experimental one. For this reason these cases
are unable to reproduce the experimental cp distribution.
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Figure 6: Influence of the inlet velocity profile upon the cp distribution at the cavity floor.
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Figure 7: Comparison of the cp distribution at the cavity floor with experimental data.

Influence of the Reynolds number. For this investigation, a cavity having a 1:12
aspect ratio was considered. The Reynolds number based upon the cavity depth, Res, was
varied from 147 to 662. For all cases, two bubbles were found, as expected, but the Reynolds
number influenced not only the location of the bubbles but also their shape. The first
simulation was done for Res=147 which correspond to a free stream velocity uin=0.4 m/s. In
this case it was observed that the flow penetrates the cavity touching its bottom. The first
bubble has its center at (x/s) = 2.4 while the second and smaller one is centered at (x/s) = 11.6.

As the Reynolds number increased, by making U∞ larger, the bubbles centers moved closer to

each other. For U∞ = 1.8 m/s (Res=662) the center of the bigger re-circulating bubble was
found to be at (x/s)= 8.9, while the smaller bubble barely moved, having its center now
located at (x/s)=11.2. This was the closest the two centers came to each other. Except for the



lower Reynolds number, the flow field did not have a stagnation point at the cavity floor. This
is explained by the greater inertia of the incoming flow as the Reynolds number increases.
Thus for Res=294, 441, 662 the two re-circulation zones simply relocate inside the cavity. In
Fig. 8 it is sketched, not to scale, the flow topology for cases Res = 147 and 662 discussed
above. A drawing of the flow topology was made, because the aspect ratios used in the
calculations made it impossible to show the streamlines resulting from the numerical
simulation without distorting them.

(a)

(b)

Figure 8: Sketch of the flow over a 1:12 cavity for: (a) Res = 147 and (b) Res =662.

Figure 9 shows a zoomed view of the streamlines, obtained from the numerical
solution, close to the cavity downstream wall (Res=662). It is apparent that the bubble is
“flattened”, that is, the streamlines are elongated. The evolution of the flow topology as Res
increases indicates towards a merging of the two bubbles. However, it was not possible to
confirm this tendency in the limit, because the code diverged consistently. The point here is
that the Reynolds number based on the cavity length reached values corresponding to
turbulent flow near the downstream wall.
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Figure 9: Streamlines for the smaller bubble for Res =662 [1:12].
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Influence of the cavity aspect ratio. Finally the influence of the aspect ratio upon the
pressure coefficient along the cavity floor was investigated. The Reynolds number based on
the cavity depth, Res, was kept constant and equal to 662. The aspect ratios used for the
simulations were [1:9.6], [1:10], [1:12], [1:18] and [1:28]. The sketches of the flow topology
for some of these cases are shown in Fig. 10. The flow is very different for each of the three
aspect ratios. The shortest cavity presented a flow pattern in which only one re-circulating
bubble appeared. It is important to emphasize that the numerical code is being very accurate
in reproducing the flow topology. This is confirmed by the two-bubble formation for the
slightly greater aspect ratio [1:10], as reported in the literature (Sinha et al., 1982). The much
longer cavity tends to behave like a sequence of a backward facing step, a flat plate and a
forward facing step. Thus the flow separates abruptly at the upstream wall, reattaches
somewhere on the cavity floor and close to the downstream wall another separated region is
formed.

(a) aspect ratio: [1:9.6]   (b) aspect ratio:[1:10]

(c) aspect ratio: [1:28]

Figure 10: Sketch of the flow for several aspect ratios and Res = 662.

The pressure coefficient distributions associated with four different aspect ratios are
shown in Fig. 11. Notice that there is a well-defined valley for the smaller aspect ratio, which
corresponds to the center of the only re-circulation bubble formed [Fig. 11(a)]. The higher
aspect ratios presented a cp distribution very similar to the one shown in Fig. 7. For these
cases, a much smoother distribution of the pressure coefficient along the cavity floor is found
indicating “weaker” vortices associated to the longer cavities.
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Figure 11: cp distribution at the cavity floor for: (a) 1:9.6, (b) 1:12, (c) 1:18.

6. CONCLUSION
The laminar flow inside cavities of aspect ratios ranging from [9.6] to [28] was

simulated. The flow topology obtained is in agreement with experimental data. It became
apparent that the inlet velocity profile has a direct influence upon the flow inside the cavity.
The aspect ratio is determinant as to the number and the shape of re-circulating zone will
exist. This is certainly an essential factor in the design of low loss solar energy collectors.
Further numerical simulations are certainly needed. The authors will concentrate next on
aspect ratios raging from 5 to 10 as these values are currently used for solar energy collectors.
Another important aspect to investigate is the influence of the wind barrier upon the
oncoming flow.
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