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Universidade Federal do Rio Grande do Sul
91509–900 Porto Alegre, RS, Brasil
E-mail: lbaric@mat.ufrgs.br

Abstract. A recently developed version of the discrete-ordinates method is used to solve
in a unified manner, for plane and cylindrical geometry, some classical flow problems
based on the Bhatnagar, Gross and Krook model in the theory of rarefied-gas dynam-
ics. In particular, the thermal-creep problem for the case of a semi-infinite medium and
the Poiseuille-flow problem, for a wide range of the Knudsen number, are solved. Ana-
lytical solutions for the discrete-ordinates problem are obtained based on a “half-range”
quadrature scheme which results in simplified eigenvalue problems. Numerical results are
presented to show that the solutions are specially accurate and easy to implement.

Key Words: Rarefied Gas Dynamics, BGK Model, Discrete-Ordinates

1. INTRODUCTION

In a series of recent works (Barichello & Siewert, 1999a; Rodrigues, 1999; Barichello et. al.,
2000a), a newly developed version (Barichello & Siewert, 1999b) of the discrete-ordinates
method (Chandrasekhar, 1960) was used to solve in an unified and precise manner some
classical flow problems in the theory of rarefied gas dynamics, in a plane channel. The
solution is based on the use of a “half-range” quadrature scheme that allows us to reduce
the order of the systems and simplify the eigenvalue problems to be solved, resulting in
an analytical solution for the discrete-ordinates problem. As it has already been shown
by the application of this approach in some other problems (Barichello & Siewert, 2000a),
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the solution seems to be very effective, in the sense of obtaining accurate numerical results
based on algorithms easy to implement. In this work, to emphasize the applicability of
our discrete-ordinates approach, we would like to revisit and solve in a unified manner
some of those classical problems in regard to flow in plane-parallel media and, following
Siewert (2000a), include the case of a cylindrical tube, using a variation of the quadrature
scheme.

2. THE STATEMENT OF THE PROBLEM

In regard to the behavior of a gas as it moves along a tube or between parallel plates,
we can find a classical and detailed description in the books by Williams (1971) and
Cercignani (1990). In addition, a very good review, derivation of the basic equations and
analysis of physical parameters was recently done in the works by Sharipov & Seleznev
(1998) and Williams (2000). In this work, we follow mostly these references, however we
find convenient to point out some basic aspects for developing our solution. Thus, we
start saying that the state of a monoatomic gas is described by the one - particle velocity
distribution function f(r,v) that satisfies the nonlinear Boltzmann equation

v · ∇rf(r,v) = Ĵ(f ′, f) (1)

where Ĵ is the collision operator as described by Williams (1971), r is the position vector
and v is the particle velocity vector. In general, we are interested on the macrocharac-
theristics of the gas flow that can be defined via the distribution function, namely, the
number density, the gas velocity, the pressure tensor and the heat flow, depending on the
specific problem. To evaluate those quantities, it is usual, however, to write f as

f(r,v) = f0(r,v)[1 + h(r,v)], (2)

where h is a disturbance caused to the local Maxwellian f0(r,v) (Williams, 2000) by the
presence of the walls, to substitute Eq. (2) into Eq. (1), to use the BGK model (Bhatnagar
et. al., 1954) as a form of expressing, in a linearized way, the collision term and finally to
define an equation for h(r,v). Furthermore, some moments of the function h are defined
(Williams, 2000) such that at the end we can get the basic problems to be solved in order
to evaluate the number density, the heat flow and so on. In what follows we present the
mathematical formulation and propose a discrete-ordinates solution for the homogeneous
version of the equations that these moments satisfy, obtained by some appropriate change
of variables (Barichello & Siewert, 1999a). These will be the basic problems we will have
to deal to solve the flow problems.

In regard to the formulation of the problems, we follow Williams (2000), and we shall
base our discussion on the case (for finite media) in which the walls are parallel plates
lying at x = ±a with flow in the z−direction. There will be a gradient in the x−direction
which will determine the profiles of the velocity and temperature between the plates.
Variations in the z−direction will be due to pressure and temperature variations.

2.1. Half-Space Thermal-Creep Problem

Thermal creep is essentially a surface effect, that arises when there is a temperature
gradient in the gas, and that can lead to a gas moving relative to a fixed plate (Williams,
2000). We can consider two problems of interest, which are when the gas occupies the half



space τ > 0 and when it is confined between two plates. For the half-space thermal-creep
problem, we follow Loyalka et. al. (1975) and Williams (2000) and so seek a solution to
(what we call) the reduced BGK equation

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞
−∞

Ψ(u)Y (τ, u) du, (3)

for τ ∈ (0,∞) and ξ ∈ (−∞,∞), subject to

lim
τ→∞

Y (τ, ξ) =
1

2
AT (3a)

and the boundary condition

Y (0, ξ)− (1− α)Y (0,−ξ) =
1

2
α(ξ2 − 1

2
) (3b)

for ξ ∈ (0,∞). Here (what we call) the characteristic function is

Ψ(u) = π−1/2 exp{−u2}, (4)

AT is the thermal-slip coefficient and α ∈ (0, 1] is the accommodation coefficient. In regard
to the quantities of physical interest that we wish to establish we follow the definitions
from Loyalka et. al. (1975) and thus will compute the thermal-slip coefficient AT , related
to the tangential velocity of the gas near the wall (Sharipov and Seleznev, 1998) and the
macroscopic velocity profile

qT (τ) = 2

∫ ∞
−∞

Ψ(u)Y (τ, u) du. (5)

2.2. Poiseuille Flow in a Plane Channel

The plane Poiseuille flow, which arises from a pressure difference along the z-axis, is
probably the most deeply investigated theoretically. The problem in a plane channel can
be formulated in terms of the reduced BGK equation

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞
−∞

Ψ(u)Y (τ, u) du, (6)

for τ ∈ (−a, a) and ξ ∈ (−∞,∞), and the boundary conditions

Y (−a, ξ)− (1− α)Y (−a,−ξ) = αξ2 + a(2− α)ξ (6a)

and

Y (a,−ξ)− (1− α)Y (a, ξ) = αξ2 + a(2− α)ξ (6b)

for ξ ∈ (0,∞). Here 2a (the inverse Knudsen number) is the channel width (in nondi-
mensional units). Making use of the definitions from Loyalka et. al. (1979), in this case,
we will compute the macroscopic velocity profile and the flow rate.

We note that the solution we will describe in the next section has been also applied
(Barichello et. al., 2000a) to solve other problems in finite and semi-infinite media (Cou-
ette flow, viscous slip problem, Kramers’ problem). But since we need to keep this work
in a short length and the approaches are very similar, we will restrict ourselves to the two
problems described above.



3. A DISCRETE-ORDINATES SOLUTION

Following previous works (Barichello & Siewert, 1999a, 1999b) we start approximating
the integral term in Eq. (3) by a quadrature formula and write our discrete-ordinates
equations as

ξi
d

dτ
Y (τ, ξi) + Y (τ, ξi) =

N∑
k=1

wkΨ(ξk)[Y (τ, ξk) + Y (τ,−ξk)] (7a)

and

−ξi
d

dτ
Y (τ,−ξi) + Y (τ,−ξi) =

N∑
k=1

wkΨ(ξk)[Y (τ, ξk) + Y (τ,−ξk)] (7b)

for i = 1, 2, . . . , N . In writing Eqs. (7) we have taken into account the fact that the
characteristic function defined by Eq. (4) is an even function. In addition, we are con-
sidering that the N quadrature points {ξk} and the N weights {wk} are defined for use
on the integration interval [0,∞). We note that it is to this feature of using a “half-
range” quadrature scheme that we partially attribute the especially good accuracy we
have obtained from the solution reported here.

Seeking exponential solutions, we substitute

Y (τ,±ξi) = φ(ν,±ξi)e−τ/ν (8)

into Eqs. (7) to find

1

ν
MΦ+ = (I −W )Φ+ −WΦ− (9a)

and

−1

ν
MΦ− = (I −W )Φ− −WΦ+ (9b)

where ν is a separation constant, I is the N ×N identity matrix,

Φ± =
[
φ(ν,±ξ1), φ(ν,±ξ2), . . . , φ(ν,±ξN)

]T
, (10)

the superscript T denotes the transpose operation, the elements of the matrix W are

(W )i,j = wjΨ(ξj) (11)

and

M = diag
{
ξ1, ξ2, . . . , ξN

}
. (12)

If we now let

U = Φ+ + Φ− (13)

then we can eliminate between the sum and the difference of Eqs. (9) to find

(D − 2M−1WM−1)MU =
1

ν2
MU (14)



where

D = diag
{
ξ−2

1 , ξ−2
2 , . . . , ξ−2

N

}
. (15)

Multiplying Eq. (14) by a diagonal matrix T , we find

(D − 2V )X =
1

ν2
X (16)

where

V = M−1TWT−1M−1 (17)

and

X = TMU . (18)

As discussed by Barichello & Siewert (1999a) , we can define the elements T1, T2, . . . , TN
of T so as to make V symmetric; and therefore, since V is a symmetric, rank one matrix,
we can write our eigenvalue problem in the form

(D − 2zzT )X = λX (19)

where λ = 1/ν2 and

z =

[√
w1Ψ(ξ1)

ξ1

,

√
w2Ψ(ξ2)

ξ2

, . . . ,

√
wNΨ(ξN)

ξN

]T

. (20)

We note that the eigenvalue problem defined by Eq. (19) is of a form that is encountered
when the so-called “divide and conquer” method is used to find the eigenvalues of tridi-
agonal matrices (Golub, 1989). In addition, we see from Eq. (15) that, because of the
way our basic eigenvalue problem is formulated, we must exclude zero from the set of
quadrature points.

Considering that we have found the required eigenvalues from Eq. (19), we impose
the normalization condition

N∑
k=1

wkΨ(ξk)[φ(ν, ξk) + φ(ν,−ξk)] = 1 (21)

so that we can write our discrete-ordinates solution as

Y (τ,±ξi) =
N∑
j=1

[
Aj

νj
νj ∓ ξi

e−(a+τ)/νj +Bj
νj

νj ± ξi
e−(a−τ)/νj

]
(22)

where the arbitrary constants {Aj} and {Bj} are to be determined from the boundary
conditions and the separation constants {νj} are the reciprocals of the positive square
roots of the eigenvalues defined by Eq. (19). It is clear from Eq. (22) that we cannot
allow any separation constant to be equal to one of the quadrature points. In addition,
the scaling constant a in Eq. (22) is, at this point, also arbitrary (we will use a = 0 for
half-space applications and 2a equal to the full channel width for the finite channel-width
problems).



At this point it is convenient to modify slightly the discrete-ordinates solution we
reported by Barichello & Siewert (1999b). We note that problems based on Eq. (3) are
“conservative” and so we expect that one of the eigenvalues defined by Eq. (19) should
tend to zero as N tends to infinity. We choose to take this fact into account by explicitly
neglecting νN , the largest of the computed separation constants {νj} and, subsequently,
by writing Eq. (22) as

Y (τ,±ξi) = A+B(τ ∓ ξi) +
N−1∑
j=1

[
Aj

νj
νj ∓ ξi

e−(a+τ)/νj +Bj
νj

νj ± ξi
e−(a−τ)/νj

]
. (23)

The constants A, B, {Aj} and {Bj} that are present in Eq. (23) will, as discussed later
on this work, be determined by fixing the behavior of Y (τ, ξi) at infinity (for half-space
problems) and/or by constraining Y (τ, ξi) to meet discrete-ordinates versions of the rel-
evant boundary conditions. In writing Eq. (23) we have not used the largest (infinite)
separation constant νN and have replaced the two “missing” solutions by the two “ex-
act” terms that appear as the first elements in Eq. (23). Considering subsequently that
Eq. (23) is a mixture of exact terms and discrete-ordinates terms, we will, when it will be
necessary, integrate the exact terms exactly and the discrete-ordinates terms by making
use of our numerical quadrature scheme.

Having developed our discrete-ordinates formalism, we are now ready to solve the
specific problems defined in Section 2.

3.1. Half-Space Problems

Considering the half-space problems defined by Eqs. (3) we set the constants B and {Bj}
in Eq. (23) all equal to zero and write the desired solution as

Y (τ,±ξi) = A+
N−1∑
j=1

Aj
νj

νj ∓ ξi
e−τ/νj . (24)

Now substituting Eq. (24) into the boundary condition, Eq. (3b), evaluated at the quadra-
ture points, we find the system of linear algebraic equations

αA +
N−1∑
j=1

Mi,jAj = F (ξi) (25)

for i = 1, 2, . . . , N . Here

Mi,j = νj

[ανj + ξi(2− α)

ν2
j − ξ2

i

]
(26)

and

F (ξ) =
1

2
α(ξ2 − 1

2
). (27)

Now all we have to do is to define a quadrature scheme, solve the eigenvalue problem
defined by Eq. (19), thus obtaining the separation constants {νj}, and solve the linear
system defined by Eq. (25). In this way all that we seek here is established, viz.

AT = 2A, (28)



the thermal-slip coefficient, and the macroscopic velocity for the thermal-creep problem,

qT (τ) = 2[A+
N−1∑
j=1

Aje
−τ/νj ]. (29)

We note that in the case of solving the half-space viscous slip problem, the basic
difference will be the right-hand side in Eq. (27) (Barichello et. al., 2000a).

3.2. Finite Channel-Width Problems

Looking now at the problem defined in Section 2 to describe flow in a plane channel, we
consider the boundary conditions, subject to which we must solve Eq. (6), written as

Y (−a, ξ)− (1− α)Y (−a,−ξ) = FP (ξ) (30a)

and

Y (a,−ξ)− (1− α)Y (a, ξ) = FP (ξ) (30b)

for ξ ∈ (0,∞). To be explicit, we note that

FP (ξ) = αξ2 + a(2− α)ξ (31)

for Poiseuille flow. To solve this problem we substitute Eq. (23) into Eqs. (30) evaluated
at the quadrature points to find the system of linear algebraic equations

N−1∑
j=1

{
Mi,jAj +Ni,jBje

−2a/νj
}

+ αA−B[αa + ξi(2− α)] = FP (ξi) (32a)

and

N−1∑
j=1

{
Mi,jBj +Ni,jAje

−2a/νj
}

+ αA +B[αa + ξi(2− α)] = FP (ξi) (32b)

for i = 1, 2, . . . , N . Here the matrix elements Mi,j are given by Eq. (26) and

Ni,j = νj

[ανj − ξi(2− α)

ν2
j − ξ2

i

]
. (33)

Of course once we have solved Eqs. (32) to find the constants A, B and {Aj, Bj} we are
able to establish some quantities of interest, the macroscopic velocity and the flow rate,
respectively as

qP (τ) =
1

2

(
1− a2 + τ 2

)
− A−B τ −

N−1∑
j=1

[
Aje

−(a+τ)/νj +Bje
−(a−τ)/νj

]
. (34)

and

QP =
1

2a2

[
2aA+

N−1∑
j=1

νj
(
Aj +Bj

)(
1− e−2a/νj

)]
− 1

2a

(
1− 2

3
a2
)
, (35)

for the Poiseuille-flow problem. We note again that for solving the Couette flow and
thermal-creep problem in a plane channel we basically will change the right-hand side in
Eqs. (30) (Barichello et. al., 2000a).



4. CYLINDRICAL GEOMETRY

In regard to developing a solution for the Poiseuille and the thermal creep flow in a
cylindrical tube, we consider the BGK equation written as

ξ
(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
G(r, ξ, µ) +G(r, ξ, µ) =

∫ 1

−1

∫ ∞
0

Ψ(ξ′, µ′)G(r, ξ′, µ′)dξ′dµ′

+ Q(ξ), (36)

for µ ∈ [−1, 1], ξ ∈ [0,∞) and r ∈ (0, R), and

G(R, ξ,−µ) = F (ξ, µ), µ ∈ (0, 1] and ξ ∈ [0,∞). (37)

Here

Ψ(ξ, µ) =
2ξe−ξ

2

π(1− µ2)1/2
(38)

and again our basic equation is defined in terms of a perturbation of the particle distribu-
tions from a local Maxwellian (Williams, 1971). The solution of the integral form of this
equation (Barichello et. al., 2000b) is related to the quantities of physical interest, for
example the desired macroscopic velocity profile. However, using a convenient transfor-
mation (Mitsis, 1963), the solution of the integral form of Eq. (36) can be found in terms
of the function

Φ(r, ξ) = Y (r, ξ)− 1

4
π1/2(r2 −R2 + 4ξ2) (39)

where Y (r, ξ) must satisfy

ξ2 ∂
2

∂r2
Y (r, ξ) +

ξ2

r

∂

∂r
Y (r, ξ)− Y (r, ξ) + 2

∫ ∞
0

Ψ(u)Y (r, u)du = 0 (40)

for ξ ∈ (0,∞) and the boundary condition

Y (R, ξ) + ξΓ(ξ)
∂

∂r
Y (r, ξ)

∣∣∣
r=R

=
1

2
π1/2ξ

[
2ξ +RΓ(ξ)

]
(41)

for ξ ∈ (0,∞), for the Poiseuille-flow problem. Here Ψ(u) is defined as in Eq. (4) and

Γ(ξ) =
K0(R/ξ)

K1(R/ξ)
, (42)

where we used Kn to denote the modified Bessel functions of the second kind. We note
also that in defining the thermal-creep problem, the right-hand side of Eq. (41) will be
a different function (Siewert, 2000a). Thus, all we need is to solve what we call the Y -
problem. To start, we repeat what we did in Section 3 and we approximate the integral
term in Eq. (40) by a quadrature formula and write our discrete-ordinates equations as

ξ2
i

d2

dr2
Y (r, ξi) +

ξ2
i

r

d

dr
Y (r, ξi)− Y (r, ξi) + 2

N∑
k=1

wkΨ(ξk)Y (r, ξk) = 0 (43)



for i = 1, 2, . . . , N . Again, in writing Eq. (43) as we have, we are considering that the
N quadrature points {ξk} and the N weights {wk} are defined for use on the integration
interval [0,∞). Seeking a Bessel function solution (bounded as r → 0) of Eq. (43), we
substitute

Y (r, ξi) = φ(ν, ξi)I0(r/ν) (44)

into Eq. (43), where we used I0 to denote the modified Bessel function of the first kind,
and we follow an analogous procedure as the one presented in Section 3, so we can write

φ(νj, ξi) =
ν2
j

ν2
j − ξ2

i

(45)

where clearly, as discussed earlier in Section 3, we cannot allow νj = ξi. As in the previous

section, here the separation constants νj are defined (νj = λ
−1/2
j ) by solving the eigenvalue

problem given by Eq. (19). Continuing, we “sum up” our solutions and write

Y (r, ξi) =
N∑
j=1

Ajφ(νj, ξi)I0(r/νj) (46)

where the arbitrary constants {Aj} are to be determined from the boundary condition of
our problem.

At this point we wish to modify slightly the discrete-ordinates solution given by
Eq. (46), as we also did in the previous section, once this is a conservative problem. We
then write

Y (r, ξi) = A+
N−1∑
j=1

Ajφ(νj, ξi)Î0(r/νj)e
−(R−r)/νj . (47)

The constants A and {Aj} in Eq. (47) are to be determined by constraining Y (r, ξi) to
meet a discrete-ordinates version of the relevant boundary condition. To complete our
discussion of Eq. (47) we note that, following Siewert (2000a), we have “rescaled” the

solution by introducing in general, În(x) = In(x)e−x and K̂n(x) = Kn(x)ex, in order to
keep “underflows/overflows” in our numerical work from degrading our calculation.

To complete the solution we substitute Eq. (47) into the boundary condition evaluated
at the quadrature points to obtain a linear system as Eq. (25), for α = 1, but here

Mi,j = νj

[νj Î0(R/νj) + ξiΓ(ξi)Î1(R/νj)

ν2
j − ξ2

i

]
(48)

and F (ξi) is , for the Poiseuille-flow problem,

F (ξi) =
1

2
π1/2ξi

[
2ξi +RΓ(ξi)

]
. (49)

We can then evaluate, the macroscopic velocity and the heat flow as

qP (r) = π−1/2
[
A+

N−1∑
j=1

Aj Î0(r/νj)e
−(R−r)/νj

]
− 1

4
(r2 −R2 + 2) (50)

and

QP =
2π−1/2

R2

[
AR + 2

N−1∑
j=1

Ajνj Î1(R/νj)
]

+
1

4R
(R2 − 4) (51)

for Poiseuille flow.



5. NUMERICAL RESULTS

We first must define the quadrature scheme to be used in our discrete-ordinates solution.
In this (and other) work we have used one of the (nonlinear) transformations

u(ξ) = exp{−ξ} (52a)

or

u(ξ) =
1

1 + ξ
(52b)

to map ξ ∈ [0,∞) into u ∈ [0, 1], and we then used a Gauss-Legendre scheme mapped
(linearly) onto the interval [0, 1]. Of course other quadrature schemes could be used.
However, we have found the use of a mapping defined by either of Eqs. (52) followed by
the use of the Gauss-Legendre integration formulas to be so simple and effective that we
have not developed any special-purpose quadrature schemes.

Having defined our quadrature scheme and in developing a FORTRAN implementa-
tion of our solution, we found the required separation constants {νj} by using the special
numerical package DZPACK (Siewert & Wright, 1999) that was developed to take advan-
tage of the special structure of Eq. (19) to solve our eigenvalue problem. The required
separation constants were then available as the reciprocals of the square roots of these
eigenvalues. We then used the subroutines DGECO and DGESL from the LINPACK
package (Dongarra et. al., 1979) to solve the linear system defined by Eqs. (25) and
(32) – for the plane and cylindrical geometry cases – and so the solutions to the various
problems were considered established.

We find important to note that since the function Ψ(u) defined by Eq. (4) can be zero,
from a computational point-of-view, we can have some, say a total of N0, of the separation
constants {νj} equal to some of the quadrature points {ξi}. This is not allowed either in
Eq. (23) or Eq. (45), and so, since the quadrature points where Ψ(ξk) is effectively zero
make no contribution to the right-hand side of Eqs. (7) and the last term in Eq. (43),
we have seen that we can simply omit these quadrature points from our calculation. In
omitting these N0 quadrature points we have effectively changed N to N − N0 in some
aspects of our final solution.

In Tables 1 and 2 we present the results for the problems in a plane channel and in
Table 3 we show the results for Poiseuille flow in a cylindrical tube. In regard to these
results we show in Tables 1–3, we have typically used N = 50 to generate them and they
are given with what we believe to be seven figures of accuracy. While we found agreement
that varied from three to six significant figures with results from the literature (Loyalka
et. al., 1975; Loyalka et. al., 1979; Valougeorgis & Thomas Jr., 1986) we believe the
results presented here should be considered more definitive than those in the mentioned
earlier works – where in general different approaches were developed to solve each one of
the problems. In addition, differently of the results presented in the papers by Barichello
et. al. (2000a) and Siewert (2000a), we used here, instead of Eq. (52a) the transformation
given by. Eq. (52b), in regard to the quadrature scheme, to generate the results we present
in Tables 1 – 3, and found complete agreement with those previous results.

6. FINAL COMMENTS

In regard to additional work in the general area of rarefied gas dynamics, we note that
our variation of the discrete-ordinates method has been used to solve the temperature-



jump problem (Barichello & Siewert, 2000b) a heat-transfer problem in a plane channel
where the coupled effects of temperature and density must be resolved simultaneously
(Siewert, 1999), and new works devoted to binary gas mixtures also have been completed
(Siewert, 2000b). And so in this basic work, we believe we have shown our unified discrete-
ordinates solutions to be very effective (especially accurate and easy to implement) for
what we consider to be a set of classical problems based on the BGK model. It seems,
therefore, that we are justified in believing that the methods reported here can now be
extended to solve even more challenging problems based on improved physical models
derived from the Boltzmann equation.

Table 1: The thermal-slip coefficient AT

α AT
0.1 5.283566(-1)
0.2 5.563021(-1)
0.3 5.838476(-1)
0.4 6.110039(-1)
0.5 6.377813(-1)
0.6 6.641898(-1)
0.7 6.902391(-1)
0.8 7.159384(-1)
0.9 7.412966(-1)
1.0 7.663225(-1)

Table 2: The Poiseuille flow rate QP

2a α = 0.50 α = 0.80 α = 0.88 α = 0.96 α = 1.00
0.05 5.223297 3.089712 2.738340 2.437355 2.302257
0.10 4.556406 2.707741 2.406046 2.148241 2.032714
0.30 3.778472 2.244771 2.001067 1.794509 1.702474
0.50 3.544371 2.102266 1.876620 1.686342 1.601874
0.70 3.437669 2.038767 1.822011 1.639850 1.559186
0.90 3.383887 2.009241 1.797636 1.620223 1.541800

Table 3: The velocity slip qP (R) and the flow rate QP

R qP (R) QP

1.0 4.048069(-1) 1.458291
2.0 7.651726(-1) 1.657647
3.0 1.119114 1.879988
4.0 1.471454 2.111623
5.0 1.823461 2.348327
6.0 2.175514 2.588211

Acknowledgement
Is is noted that the work of LBB is supported in part by CNPq of Brazil.



References

Barichello, L. B. & Siewert, C. E., 1999a, A discrete-ordinates solution for Poiseuille flow
in a plane channel, Z. Angew. Math. Phys., vol. 50 , pp. 972-981.

Barichello, L. B. & Siewert, C. E., 1999b, A discrete-ordinates solution for a non-grey
model with complete frequency redistribution, J. Quant. Spectros. Radiat. Transfer,
vol. 62, pp. 665-675.

Barichello, L. B. & Siewert, C. E., 2000a, The searchlight problem for radiative transfer
in a slab, J. Comp. Phys., vol. 157, pp. 707-726.

Barichello, L. B. & Siewert, C. E., 2000b, The temperature-jump problem in rarefied-gas
dynamics, European J. Appl. Math., in press.

Barichello, L. B., Camargo, M., Rodrigues, P. & Siewert, C. E., 2000a, Unified solutions
to classical flow problems based on the BGK model, Z. Angew. Math. Phys., in press.

Barichello, L. B., Camargo, M., Rodrigues, P. & Siewert, C. E., 2000b, An integral equa-
tion basic to the BGK model for flow in a cylindrical tube, submitted for publication.

Bhatnagar, P. L., Gross, E. P. & Krook, M., 1954, A model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems, Phys.
Rev., Vol. 94, pp. 511-525.

Cercignani, C., 1990, Mathematical Methods in Kinetic Theory, 2nd Edition, Plenum
Press, New York.

Chandrasekhar, S., 1960, Radiative Transfer, Dover, New York.

Dongarra, J. J., Bunch, J. R., Moler, C. B. & Stewart, G. W., 1979 LINPACK User’s
Guide, Siam, Philadelphia.

Golub, G. H. & Van Loan, C. F., 1989, Matrix Computations, Johns Hopkins University
Press, Baltimore.

Loyalka, S. K., Petrellis, N. & Storvick, T. S., 1975, Some numerical results for the BGK
model: thermal creep and viscous slip problems with arbitrary accommodation at
the surface, Phys. Fluids, vol.18, pp. 1094-1099.

Loyalka, S. K., Petrellis, N. & Storvick, T. S., 1979, Some exact numerical results for the
BGK model: Couette, Poiseuille and thermal creep flow between parallel plates, Z.
Angew. Math. Phys., vol. 30, pp. 514-521.

Mitsis, G. J., 1963, Transport solutions to the monoenergetic critical problems, Report
ANL-6787, Argonne National Laboratory, Argonne, Illinois.
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