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Abstract. In the present work the momentum transport in two adjacent flow regions is
described by means of a continuum theory of mixtures, specially developed to model
multiphase phenomena. A generalized Newtonian fluid flows through the permeable
wall channel, originating a pure fluid region and a mixture region - where the fluid
saturates the porous matrix. The fluid and the porous matrix are treated as continuous
constituents of a binary mixture coexisting superposed, each of them occupying simul-
taneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed
for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure
fluid region), while the porous matrix, represented by the solid constituent, is assumed
rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface
(pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no
flow across the interface, the velocity should be zero on the solid parts of the boundary
and should match the fluid diffusing velocity on the fluid parts of the boundary. Also
the shear stress at the pure fluid region is to be balanced by a multiple of the partial
shear stress at the mixture region. A minimum principle for the above-described prob-
lem, assuming fully developed flow in both regions, is presented, providing an easy and
reliable way for carrying out numerical simulations.
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1. INTRODUCTION

The present work studies the momentum transport in the flow of a Stokesian fluid
through a channel bounded by a permeable wall. Two distinct flow regions are consid-
ered in the mathematical model, one is occupied by a Non-Newtonian incompressible
fluid (the so-called pure fluid region) while in the other one a porous medium is sat-
urated by the above-mentioned fluid. A continuum theory of mixtures approach - a
generalization of the continuum mechanics, specially developed to deal with multiphase
phenomena - is employed in the description, in such a way that the region with the
porous matrix is denoted by mixture region (a binary solid-fluid mixture is consid-
ered) and in the pure fluid the continuum mechanics balance equations are recovered.
The mixture region consists of two overlapping continuous constituents: an incompress-
ible fluid constituent, representing the Non-Newtonian fluid and a rigid, homogeneous,
isotropic and at rest solid constituent, representing the porous matrix.

Some examples of the above described flows may be found in porous bearing lubri-
cation, flow of perforation mud in oil whells and packed-bed heat exchangers (in which
the porous matrix is only present in a vicinity of the hot-cold fluid interface, where the
heat exchange is higher).

Transport in porous media are generally modeled by employing a local volume-
averaging technique, discussed in detail by Whitaker (1969), to describe quantities such
as temperature, pressure, concentration and the velocity components; allowing the use
of the classical continuum mechanics approach. Vafai and Kim (1990) have used this ap-
proach and Darcy’s law - with the addition of empirically determined terms (Brinkmann
and Forchheimer extensions) to account for inertia and viscous effects and to satisfy the
no-slip condition - as the balance of linear momentum. They analyzed convective flow
and heat transfer in two distinct flow regions (fluid and fluid-saturated porous medium)
aiming at a fundamental investigation of the interaction phenomena at the interface,
where continuity of velocities, pressure, deviatoric normal and shear stresses, tempera-
ture and heat flux were imposed. Assuming steady-state flow and local thermal equi-
librium, they simulated a problem by means of a control volume method, studying the
effects of Darcy and Prandtl numbers, of an inertia parameter (related to the Forch-
heimer term) and of a conductivity ratio, which relates the porous medium effective
conductivity to the fluid conductivity. Huang and Vafai (1993) have studied the forced
convection over a complex geometry consisting of multiple porous blocks attached to an
impermeable wall. Two distinct flow regions are considered in this arrangement used
for flow and heat transfer control: the fluid and the fluid flowing through the porous
blocks. A numerical investigation of the flow field and thermal characteristics, using a
control volume method, was performed.

A distinct approach is employed in this work to describe the flow of a Non-
Newtonian fluid through a channel with permeable wall: the mixture theory, which
generates a thermodynamically consistent local model. On the other hand, it gives rise
to a momentum source (absent in continuum mechanics) to provide dynamical interac-
tion among the mixture constituents, since the theory allows the existence of as many
velocity fields as the number of constituents in the mixture. This approach has already
been successfully employed in the modeling of the convection of a Newtonian fluid in
two distinct flow regions (Martins-Costa and Saldanha da Gama, 1994). Constitutive
relations for the partial stress tensor (Martins-Costa et al., 1992b) and the momentum
source (Saldanha da Gama and Sampaio, 1985) for a Stokesian fluid, satisfying the



Second Law of Thermodynamics (Costa Mattos et al., 1993; 1995), have been used.

Compatibility conditions at the interface (pure fluid-mixture) for momentum trans-
fer are proposed and discussed. Kinematics and dynamic compatibility conditions char-
acterize this interface. Considering continuity in the velocity field the velocity should
be zero on the solid parts of the boundary (since the porous matrix is supposed to be
at rest) and should match the fluid diffusive velocity on the fluid parts of the bound-
ary. It is also expected that both solid and fluid constituents receive shear stress from
the fluid stream at the pure fluid region. In other words, the pure fluid shear stress is
balanced by a shear stress multiple in the mixture region. It should be noticed that, at
the interface, the pure fluid velocity is distinct from the fluid constituent velocity (in
the mixture region), when a mixture theory viewpoint is considered.

The mathematical description of this two-region isothermal flow, namely mass and
linear momentum conservation for the fluid in the pure fluid region and for the fluid
constituent in the mixture region, is simplified by assuming fully developed flow in
both regions. A variational formulation has been derived, since this problem has an
equivalent minimum principle. The existence of a functional whose minimization is
equivalent to the solution of the differential problem is a powerful tool for obtaining
numerical approximations.

2. MATHEMATICAL MODELING

In what follows a binary mixture is considered, representing the saturated flow of a
generalized Newtonian incompressible fluid through a rigid homogeneous and isotropic
porous matrix, supposed to be at rest. Since the solid constituent is assumed rigid, it
suffices to solve mass and linear momentum balance equations for the fluid constituent
of the mixture.
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Figure 1 - Typical two-region arrangement.

Representing by the open set 21, with boundary 9€2;, the region occupied by the
pure fluid and by the open set €29, with boundary 922, the region occupied by the
mixture - as shown in Fig. 1, the mass balances are (Martins-Costa et al., 1992a;
Saldanha da Gama and Sampaio, 1983)
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in which p is the actual fluid density in ¢, v is the fluid velocity in 2, pg is the fluid
constituent mass density in 2o and v is the fluid constituent velocity in {25. The field
pr is locally defined as the ratio between the fluid constituent mass and the volume of
the mixture. Since a saturated flow is being considered, pr = py, where ¢ represents
the porosity. The mass of each constituent is preserved, assuring that the mass of the
mixture as a whole is automatically conserved, in the absence of chemical reactions.

The balance of linear momentum is given by (Martins-Costa et al., 1992a; Saldanha
da Gama and Sampaio, 1983):

)
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aVF :
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in which o is the Cauchy stress tensor, oy is the partial stress tensor associated to
the fluid constituent, g is a body force per unit mass and myp is an interaction force
per unit volume acting on the fluid constituent, due to its interaction with the solid
constituent of the binary mixture. The field my is a momentum source, arising from
the existence of more than one velocity at each point in the mixture region. Since mp is
an internal contribution, considering a solid-fluid mixture, the relation mp = —mg must
hold everywhere, with mg denoting the interaction force acting on the solid constituent.

2.1 Constitutive Assumptions

Non-Newtonian behavior is characterized by the shear stress being no longer lin-
early proportional to the velocity gradients (as in the Newtonian case). Among these
fluids three broad groups may be distinguished: purely viscous, viscoelastic and time-
dependent fluids (Cho and Hartnett, 1982). Purely viscous fluids are also called general-
ized Newtonian fluids because their models may be viewed as modifications of Newton’s
law of viscosity to allow the viscosity to become a function of the shear rate. Generalized
Newtonian models include, among others, the Ostwald-de Waele fluid (also known as
power-law fluid), the Bingham plastic, the Ellis fluid and the Eyring fluid. The power-
law model, despite its simplicity, is a good approximation for most Non-Newtonian
fluids, particularly in the laminar flow regime. This simplification may even include
pipe flow of viscoelastic fluids, resulting from the fact that their elastic nature does not
play a significant role in laminar pipe flow (Cho and Hartnett, 1982).

In this work an Ostwald-de Waele model is employed to describe the fluid flow in
the region €2 UQy. The following constitutive equation for the stress tensor is employed
in the pure fluid region (Bird et al., 1977):

o= —pl—+ 2770(D . D)nD in Q4 (5)



where p is the pressure acting on the fluid and ny and n are the Ostwald-de Waele
parameters of the fluid. Equation (5), also known as power-law, is reduced to Newton’s
law of viscosity if n = 0 and 7 is the fluid viscosity. The deviation of Newtonian
behavior is related to the deviation of n from zero. Power-law fluids may be classified
as shear thickening and shear-thinning according to the value of n. They have dilatant
behavior when n > 0, being pseudo-plastic for n < 0.

An analogy with the partial stress tensor proposed by Williams (1978) for a Newto-
nian fluid leads to the following constitutive relation for the partial stress tensor acting
on the generalized Newtonian fluid described by Eq. (5) (Martins-Costa et al., 1992b)

o, = —ppl +2X2p%no(D,, - D,)"D, in Qs (6)

where A is a scalar parameter depending on the porous matrix microstructure and D
is the symmetric part of the Vv,.

According to Saldanha da Gama and Sampaio (1985) the interaction force acting
on the fluid constituent, considering an Ostwald-de Waele behavior described by Eq.
(5) for the fluid as a continuum, is given by

2
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m, = -2 (57) 3(am) el in £, (7)

in which K is the porous matrix specific permeability and the solid constituent has been
assumed at rest.

2.2 Problem Description

The problem represented by equations (1)-(4), combined with constitutive assump-
tions (5)-(7), assuming a steady-state fully developed flow of an Ostwald-de Waele
incompressible fluid flowing in both regions, may be stated as

V-v=0 in Ql
V'VF =0 in QQ
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(8)
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Equation (8) requires, besides the classical no-slip conditions (v = 0 and v, = 0)
at the impermeable boundaries, compatibility conditions at the interface pure fluid-
mixture. The interface between the regions 2; and (s is defined by the set 9Q2; =
Q1 N Q. At this interface some compatibility conditions must be imposed in order to
allow the solution of the problem. According to Williams (1978), since there is no flow
across the interface, the following relations must hold:
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in which n is an outward normal to 9€2; and t is any tangent to 0€);. The compatibility
equations (9) simulate the experimental condition proposed by Beavers and Joseph
(1967), which was confirmed and generalized by several authors (Nield and Bejan, 1992).
The idealized model for a porous medium, employed by Taylor (1971) and Richardson
(1971) gives theoretical support to Beavers and Joseph’s condition. Equations (9),
obtained from the solution of thermodynamically consistent equations (derived by means
of a mixture theory viewpoint) in both regions, do not suffer from the difficulty of
matching the porous medium flow equations with the fluid equation, discussed by Nield
and Bejan (1992). Williams (1978), based on a no-slip condition, concluded that the
velocity should be zero on the solid parts of the boundary (since the porous matrix is at
rest) and should match the fluid diffusing velocity on the fluid parts of the boundary. He
also supposed that both solid and fluid receive shearing stress from the fluid stream at
the pure fluid region. It should be noticed that, at the interface, the pure fluid velocity
is distinct from the fluid constituent velocity (in the mixture region), when a mixture
theory viewpoint is considered.

3. THE MINIMUM PRINCIPLE

The problem described by Eqs. (8)-(9) is equivalent to the minimization the fol-
lowing functional (Kreyszig, 1978)
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where || * || corresponds to the Euclidean norm (x - %)/2,

The minimization of the functional II in Eq. (10) is considered for a space of
admissible fields {u} (Mikhin, 1964) which must be such that the essential conditions

V-v=0 and V-v,=0
v-n=0 and vV, n= on 0§
(11)
v=20 and Ve = 0 on aQimp
vit=¢pv, -t on 0f);

are satisfied. The first two equations in Eq. (11) characterize the admissible functions
and 0, denote any impermeable boundary.

Taking the first variation of II (Mikhin, 1964),
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Now, applying the Divergence Theorem and imposing the first variation of II to be zero,
the following relation is obtained
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(13)
where n; represents the unit outward normal to the surface 9€2;.

At this point one can conclude that the Euler-Lagrange equations corresponding
to the variational principle stated in Eq. (13) are the equation of continuity and the
components of the equation of motion. Considering an Ostwald-de Waele fluid in a
steady-state fully developed flow in a channel with permeable wall, they are represented
by Eq. (8). Besides, the natural boundary conditions are given by

/ 7)0||D||2”‘D ny-oévdSs —|—/ 2/\QO2T]0||DF||2nDF ne -6vp dS = 0 (14)
151921 5192

It can be shown that the boundary conditions stated in Eq. (14) are equivalent to Eq.
(9¢), which may be stated as

no||D[*"D n -t = Ap?no||Dp||*"Dp n - t on 9Q; (15)

The boundaries 9€2; and 9€)2 may either be composed by a permeable surface separating
the pure-fluid and the mixture regions or by impermeable surfaces, so Eq. (14) may be
rewritten as

/ no||D[|?"D ny - 6v + 22200 ||Dr||*"Df 1y - 6vy dS
01 NONs
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Since on the impermeable boundaries 9y, both fields v and vy are prescribed, the
second and the third integrals of Eq. (16) are zero everywhere. In the first integral,
since 9§}y and 99, are adjacent regions, 9021 N 9Ny # 0. So, Eq. (16) is satisfied if

no|DII*"D ny - 6v + 22 no|| De[|*"De ng - éve = 0 (17)

Since 9§21 N 925 is the interface separating the adjacent regions, it comes that

n,=-np=n on 0071 NN (18)

From Eq. (9b) one can conclude that

6V = pévp (19)

Now, combining Eqgs. (17)-(19), the following relation may be written

no[|D[*"D n - 6v + Ap?no| Dy ||*" Dy (—n) - 6v = 0 (20)

and, since both év and évg are tangent to the interface 921 N 9€2,

no|[D[I*"D n - t = Ap?no| Dr|*" Dy n - t (21)

which is, exactly, Eq. (15). So the minimization of the functional IT was shown to be
equivalent to the solution of the problem stated in Eqs. (8)-(9).

4. FINAL REMARKS

In this work the momentum transport in two distinct flow regions is modeled, in
a context of a systematic local theory: the continuum theory of mixtures. In the so-
called mixture region, fluid and solid (the porous matrix) are treated as continuous
constituents of a binary mixture while the classical (continuum mechanics) balance
equations are recovered in the pure fluid region, where the mixture is reduced to a
single constituent.

Conditions at the interface pure fluid-mixture were imposed in order to assure the
continuity of the velocity and shear stress fields.

Most of the works on transport phenomena in porous media use a volume-averaging
technique based on a continuum mechanics approach. A different approach is used in
this work. The continuum theory of mixtures, which generalizes the classical continuum
mechanics, allows the construction of a thermodynamically consistent local model by
means of a systematic procedure to describe the transport phenomena in two distinct
flow regions: a fluid and a fluid-saturated porous medium. The cost associated with the
use of the mixture theory is not high. In fact, it consists only of a few new definitions
and some new terms in the balance equations such as, for instance the momentum
interaction term (mpg).

An equivalent minimum principle was established, providing a powerful tool for
numerical simulations and for ensuring existence and uniqueness of the solution.
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