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Abstract. In this two-part paper, we present  numerical solutions for buoyancy induced flows  in
high porosity metal foams heated from below. Experiments conducted under natural convection
conditions for the same configuration were used to validate the numerical model. The results
show enhancement in heat transfer for different metal foam - fluid combinations. Thermal
dispersion effects and the effects of  Darcy number on heat transfer are reported. Conditions
under which the local thermal equilibrium (LTE) assumption can introduce significant errors are
also discussed.
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1. INTRODUCTION

High porosity metal foams (ε  > 0.85) have gained attention in recent years as potentially
excellent candidates for meeting the high thermal dissipation demands in the electronic industry.
The mechanisms that contribute to the enhanced heat transfer include heat conduction in the
metal foam matrix (whose conductivity is usually several orders of magnitude higher compared
to the fluid conductivity), and thermal dispersion in the fluid at high velocities. The dispersion
conductivity accounts for the effects of pore-level hydrodynamics on the macroscopic transport
and essentially represents the enhanced mixing due to the presence of the solid phase.

The well-known Darcy's  law is based on a balance between the pressure gradient and the
viscous forces and  breaks down for high velocities when inertia terms are no longer negligible.
Non-Darcian effects become particularly important in metal foams as the fluid moves in tortuous
paths and eddies are shed behind the solid fibers in the interstitial pore volume. The resulting
pressure drop across the medium and the increased mixing (or dispersion) accounts for an
increase in the net transport. Earlier efforts to quantify effects of dispersion were mostly
confined to packed beds. Relevant to metal foams is the work of Hunt and Tien (1988) which



showed that, for forced convection, significant augmentation in heat transfer takes place due to
thermal dispersion. More recent studies aimed at understanding effects of thermal dispersion in
forced convection have also shown an increase in heat transfer with the inclusion of thermal
dispersion (Amiri and Vafai, 1994; Amiri et al., 1995; Hsiao, 1998, Calmidi, 1998, Calmidi and
Mahajan, 2000).  Jiang et al. (1999) found that, if thermal dispersion effects are ignored  for
forced convection in water, then the numerically predicted heat transfer results are lower
compared to the experimental results.

The aim of this paper is to present numerical results for buoyancy-induced flow in a high
porosity metal foam sample heated from below and placed in a region surrounded by air. Energy
transport in porous media is  generally studied by invoking the  assumption of local thermal
equilibrium (LTE). The validity of this assumption for the case of metal foams is doubtful in
view of the vastly different thermal conductivities  encountered for the metal foam -- fluid
combinations. Consequently, the effects of local thermal non-equilibrium (LTNE) are studied by
using a two-equation model for energy.  Such an approach was followed earlier, among others,
by Amiri and Vafai (1994), Amiri et al., (1995), Jiang et al. (1999) and Nield and Kuznetsov
(1999), Calmidi (1998) and Calmidi and Mahajan ( 2000). Finally, limited experimental data in
support of the numerical simulation, is also presented.

2. ANALYSIS

Consider a two-dimensional metallic foam sample heated from below. The metal foam is
surrounded by an air region with an imaginary boundary extending a distance 1s  in the x-

direction and 2s  in the y-direction. The governing equations for the fluid and porous media are
written separately. For the ambient air domain we have:

Continuity and Momentum:

0=
∂
∂+

∂
∂

y

v

x

u
           (1)







∂
∂

∂
∂+







∂
∂

∂
∂+






∂
∂=

∂
∂+

∂
∂ −

y

u

yx

u

xx

p

y

u
v

x

u
u aaa µµρ 1

           (2)

)(

1

∞

−

−+





∂
∂

∂
∂

+






∂
∂

∂
∂+





∂
∂=

∂
∂+

∂
∂

TTg
y

v

y

x

v

xy

p

y

v
v

x

v
u

a

aa

βρµ

µρ
    (3)

Energy equation for air:
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where vu,  are the velocoty components in the x and y directions, T is the temperature and the
subscripts a and ∞  denote the conditions for air and ambient respectively. For the porous



medium the governing equations for the non-Darcian model were derived following the well-
known volume averaging procedure for porous media (Whitaker, 1967; Vafai and Tien, 1981).
The  macroscopic momentun equations governing the present problem and the solid and fluid
phase energy equations can be  written as follows.

Continuity and Momentum:
0=⋅∇ v                               (5)
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Energy Equation for the Fluid:
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Energy Equation for the Solid Matrix:
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In the momentum equation (6), the last three terms are the Brinkman (or friction) term, the Darcy
term and the Forchheimer (or inertia) term. The notation φ  is used to denote the local volume

average of a quantity while 
γφ denotes the intrinsic phase average of the same quantity for

phase γ  while the subscripts s and f denote solid and fluid respectively. The effective

conductivities effk , sek and fek  are functions of the geometry of the medium and the individual

conductivities sk  and fk  respectively.  In the above, C denotes the geometric function, sfh  is the

interfacial heat transfer coefficient between the solid matrix and the fluid, and   sfa  is the

specific surface area of the foam sample defined as the total interstitial surface area of the pores
per unit bulk volume (Bear, 1972) and calculated based on geometrical considerations (Calmidi,
1999) as:
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Here pd  is the pore-size and fd  is the fiber diameter. Pore size refers to the size of the pores

which are in the shape of a dodecahedron and is usually expressed in units of pores  per inch
(PPI). The fibers of the metal foam form the edges of a dodecahedron with about 12-14 sides and
the cross section of the fiber is circular only for low porosity values. The porosity ε , pore size

pd  and the fiber diameter fd are related. Since the geometry of metal foams is considerably

complex, workable approximations have been derived based on simpler models (Calmidi, 1999).
The following equation from Calmidi (1999) is based on one such model and is used in the
present work.
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Figure 1 Definition Sketch and Boundary Conditions

The interfacial heat transfer coefficient for packed beds is usually calculated using a correlation
due to Wakao et al. (1979) although no such general correlation exists for foamed materials. In
view of the fact that the radial temperature gradients are expected to be small for metal foams, it
is reasonable to use an appropriate Nusselt number correlation for flow over an external body to
calculate sfh . For example, Sathe et al. (1990) used the heat transfer coefficient for a cylinder in

cross flow in the study of porous radiant burners. For the present problem the natural convection

velocity v  can be used to calculate a  Reynolds number based on the fiber diameter

(= εν ⋅⋅ /fdv ) and then sfh can be calculated using a forced convection correlation. This is

based on the assumption that the natural convection velocity at a point essentially becomes a



forced flow for a fiber at that location. For most of the cases considered in the present work, the
range of fiber Reynolds numbers ( dRe ) was less than 5000. For this range the following

correlation proposed by Zhukauskas (1972) can be used to estimate sfh :
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The above correlation is strictly valid for circular cylinders. For a metal foam, the cross-section
of the fibers is circular only for low porosity values. As the porosity increases (> 0.9), the fiber
cross-section changes from being circular to almost triangular Since interest in the present work
is confined to high porosity values, we need a correlation that takes this fact into account.
However, a closer examination of the heat transfer correlations for external flow over bodies of
different cross-sections (Incropera, 1997) showed that an equation of the form

37.0PrRe m
dTd CNu ⋅=          (13)

can be used for non-circular cross-sections and that the exponent m  varies much more slowly
compared to the  constant TC . The exponent m was found to lie between 0.5 and 0.78 depending
on the cross-section and the Reynolds number. Since  the fiber Reynolds numbers encountered in
the present work  are less than 103, we have decided to study the effect of the fiber cross-section
on the heat transfer by replacing equation (12) with equation (13) and by using different values
for TC  while using a constant value of  51.0=m  for the exponent.  The results of this study are
presented later.

The effective thermal conductivity of the porous medium ( effk ) as well as the effective

conductivities for the solid and the fluid phases( sek  and fek ) depend on the porosity ε ,

geometry of the metal foam and the individual conductivities of  the solid and the fluid ( sk  and

fk  respectively). These quantities were evaluated using the following expressions proposed by

Calmidi and Mahajan (1999):
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In the above equations ( )Lb /  and  r  are functions of the metal foam geometry while sk  and fk

denote the conductivities of the individual phases (solid and fluid respectively). A value of
09.0=r was found to produce an excellent agreement with the experimentally measured values

of conductivity for metal foams.  The effective conductivities for the solid and the fluid ( sek  and

fek ) can be obtained as special cases from the above equation by setting 0=fk  and 0=sk

respectively. All computations reported in this paper  used the dimensions of the metal foam
sample from the experiments - 5.2 ′′ (Length) x 0.2 ′′ (Height).

In our work, the dispersion is treated as an additional contribution to the stagnant diffusive
component as shown in equations (3) and (4) (Hunt and Tien (1988 ), Amiri and Vafai( 1994) ).
In an earlier analysis, Koch and Brady (1986 ) used ensemble averaging and defined the
dispersion as the product of the velocity, fiber thickness and a constant dependent on the
porosity. Using this approach, the dispersion coefficient can be written as:

v⋅= KCck Dpd ρ          (15)

Since the metal foam matrix is isotropic, we assume that the x and y components of dispersion
are equal (i.e., ddydx kkk == ).  The coefficient of thermal dispersion DC  requires determination

and is described  later.

The above model for dispersion does not account for wall effects directly, except through the
change in the velocity profile near the wall. For packed beds, Cheng (1986) proposed the use of a
wall function to account for the reduced mixing and hence, reduced dispersion close to the wall.
The length scaling for this case, is however, based on the Brinkman screening length ( ~

O( K )) which is very small for metal foams. Consequently, a wall function is not used in the
present work as  the reduced velocity near the wall is expected to account for the reduced
dispersion.

The boundary conditions for the above set of equations are shown in Figure 1. In view of the
symmetry in the problem, it is sufficient if we solve only one half of the domain. We consider
the right half of the domain and consequently, the left edge AD becomes a line of symmetry as
shown in Figure 1. No-slip conditions are imposed on the bottom surface (AB). Conditions on
the two imaginary boundaries (BC and CD) are specified so as to allow air to cross these
boundaries freely (locally parabolic assumption). The two sets of equations for the air and porous
regions are coupled at the two interfaces (EF and FG) by the following matching conditions.

For the interface in the x - direction:
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For the interface in the y - direction:
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Conditions (a)- (e) above express the continuity of temperature, heat flux, normal and tangential
velocities and the pressure respectively while conditions (f) - (g) match the deviative normal and
shear stresses at the interface.  Equations (g) represent an extension of the shear stress matching
condition due to Neale and Nader (1974) for flow which is not parallel to the interface. Vafai and
Thiagaraja (1987) showed that this matching condition can be used at the interface only when the
Brinkman shear term is included in the momentum equation.  In the above equations effµ  is an

effective viscosity of the porous medium and is associated with the Brinkman term in the
momentum equation. Determination of  effµ  remains an open problem (Givler and Altobelli,

1994). Results obtained by assuming µµ =eff  were found to be in good agreement with

experimental studies (Beckermann et al, 1987, Sathe et al., 1988). This approach is adopted in
the present work.  Matching the heat flux at the interfaces becomes a non-trivial task when the
solid and fluid phase equations are solved separately. We are not aware of any earlier work in
which heat flux was matched at a fluid-porous interface (with a finite velocity) while using the
two-equation model for energy. The difficulty was noted earlier by Amiri et al. (1994) while



specifying a heat-flux boundary condition in a porous channel and more recently by Nield and
Kuznetsov (1999). Neither of these papers, however, deals with a fluid-porous interface.  The
issue is related to the fact that it is not obvious how the flux from the porous medium gets
divided between the solid and fluid phases so that it can be equated to the flux from the air side.
It is possible to think of  different scenarios here. In  one scenario, if we assume that  heat is
dominantly transported to the interfaces by conduction in the solid matrix due to the high
conductivity of metal foams and subsequently convected away, then  local thermal equilibrium
(LTE) can be assumed at the interfaces giving a single temperature for the solid, fluid and the air:

Saf TTT == (18a)

Each of the individual fluxes for the solid and the fluid phases can be assumed to be in balance
with the flux for the air region as shown below for the interface at Lx = :
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The single-domain approach used in the present work satisfies equations  (18a) and (18b). The
above approach was found to provide an excellent agreement between the model predictions and
the experimental data under a wide range of conditions.

3. DIMENSIONLESS EQUATIONS

The governing equations for the fluid and porous regions were  solved using a unified one-
domain approach. The advantage of such a formulation lies in the fact that it automatically
ensures the satisfaction of  the interfacial conditions. In addition, it does not involve complicated
inner iteration loops for values at the interface ( Beckermann et al., 1987; Vafai and Kim, 1994).
Consequently, the two sets of equations for the fluid and the porous regions are combined into
one set by using the following binary flag:
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We drop the φ  notation for convenience and make the above equations dimensionless by

employing the following scales: H for length, )( ∞−TTh  for temperature, ( )Hf /α for velocity,

( )fH α/2 for time and ( )22 / αρ ⋅H  for pressure. The resulting dimensionless equations using

primitive variables appear as shown below.
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Energy Equation for the Fluid and Air:
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Energy Equation for the Solid Matrix:
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The dimensionless quantities appearing in the above equations are defined as shown below.
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The dimensionless boundary conditions are shown in Figure 1. The interface matching
conditions are not shown in dimensionless form for the sake of brevity as they can be easily
derived from (14)-(15). Heat transfer from the heated wall occurs both through the solid phase
and the liquid phase. The total heat transfer can be written as,
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We note that the above definition of the total  Nusselt number is not suitable if one is interested
in the heat transfer augmentation that results from using the metal foam (compared to the case in
which there is no metal foam). For that case, it is more convenient to define a second Nusselt



number that is based on the fluid conductivity rather than the effective conductivity of the porous
medium. This quantity is defined as:
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Similarly, the Nusselt number corresponding to the case in which there is no metal foam can be
defined as:
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The percentage enhancement in heat transfer resulting from the use of the metallic foam can then
be defined as:
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Unless mentioned otherwise, all subsequent references are to the total Nusselt number as defined
in equation (26).

4. NUMERICAL METHOD

The above system of equations and boundary conditions have been solved using  control volume
based,  semi-implicit methods (Patankar, 1980). The control volume formulation ensures
conservation of momentum and energy as well as continuity of fluxes. The harmonic mean
formulation of Patankar was used to describe the diffusion coefficients at the porous-fluid
interfaces. This formulation can handle abrupt changes in the properties (such as permeability)
across the interface without requiring an excessively fine grid. A staggered, non-uniform grid
and the power-law scheme were used. The velocity – pressure coupling was handled using the
SIMPLER algorithm. The non-uniform grid enabled the placement of fine steps at the porous-
fluid interface and at the boundaries. All computations reported in this paper were carried out
using a 101 x 101 non-uniform grid after carrying out a careful grid dependence study.  For this
level of grid refinement, the uncertainty in the average Nusselt number reported is not greater
than 3%. The width of the air domain was increased till the difference in the Nusselt number is
less than 1%. A value of 1.0  was finally used for the dimensionless width of the air domain in
both the x and y directions.  The stopping criterion for the computations was based on the
requirement that the relative error in all variables between two successive iterations must be  less
than 1.0 x 10-5.

4. RESULTS AND DISCUSSION

To validate the present model, including the treatment of the interface, we have compared our
model results with the work of Beckermann et al. (1987) for natural convection in a rectangular



enclosure in which there is a fluid-porous interface. A very good overall agreement is obtained
and the average Nusselt numbers are in excellent agreement. Figure 2 shows a comparison of the
dimensionless temperature profiles for one case.

Figure 2.  Comparison  of present numerical results (dimensionless temperature) with the work
of Beckermann et al. (1987) for flow in an enclosure in the presence of an interface. The
interface is located at x = 0.5.

5. CONCLUSIONS

In the present work we formulated the problem of non-Darcy natural convection in a metal foam
heated from below and validated the model by comparing with published results. In part  2, we
apply the model to study the flow and heat transfer characteristics of metallic foam samples .
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