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Abstract. Genetic Algorithms (GA) are search optimization methods that use principles of natural genetics and natural selection. In 
this method, the possible solutions for a certain problem in question is represented by some form of a biological population, which 
evolves over generations to adapt to an environment by selection, crossover and mutation.  Instead of working with a single 
solution at each iteration, GA work with a number of solutions, known as a population. The main goal in a single-objective 
optimization is simply to find the global optimal solution. On the other hand, in a multi-objective optimization, there is more than 
one objective function, and each one may have a different optimal solution. If there is sufficient difference in the optimal solutions, 
the objective functions are conflicting with each other. The multiple optimal solutions exist because no solution can be optimal for 
multiple conflicting objectives, and the obtained set of possible solutions is known as Pareto-front. Once multiple solutions are 
found, a higher-level decision is adopted; here one must choose which solution better satisfies the optimization problem in 
question. Aerodynamic design optimizations are often multimodal and nonlinear problems, because the flowfield is governed by a 
system of nonlinear partial differential equations. This work is focused on airfoil shape optimization using a multi-objective genetic 
algorithm concept known as Non-dominated Sorting Genetic Algorithm – NSGA. The MSES code, an Euler equation solver with 
boundary layer correction, is coupled to the NSGA implementation. The airfoil shape is obtained by polynomial parameterization 
and, for each of the multiple design points, the drag coefficient (Cd) is used as objective function. 
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1. INTRODUCTION 
 

Since the factitious September 11th, the demand for commercial airplane has diminished all over the world. This 
fact leads to a harder competition between the aeronautical companies, in such a way that only the fittest can 
satisfactory respond to the market necessities. In general terms, the best choice means not only a lower price for an 
airplane acquisition but also a lower direct operating cost (DOC). The crew costs, the maintenance costs (airframe and 
engine), the insurance costs, and the depreciation of the airplane contribute to the direct operating cost (DOC).  

In fact, to obtain a lower DOC, it is necessary to perform an optimization of the whole product, in this case the 
airplane. In such a process, all the involved design areas participate of this Multidisciplinary Design Optimization 
(MDO) study. Such approach is a present trend in the aeronautical industry and, in the context of the aerodynamic 
design team, the main goal consists in obtaining a lower drag value at a Mach number as higher as possible. Typically, 
an increase in the flight Mach number produces a reduction in the DOC, due to the increase in productivity caused by 
the reduction of the flight time. However, this increase in the Mach number must be accomplished with a satisfactory 
operation performance; otherwise the airplane might not be competitive anymore. 

Although airfoils are two-dimensional representations of wing profiles, their influence on the 3D designs can be 
very effective. Therefore, the proposed design methodology will be based solely on the profile modifications. It is not 
always true that these optimized profiles produce an improvement in the wing design, due to the three-dimensional 
characteristics of the flow. Nevertheless, when a better wing is obtained, we have a considerable reduction in drag since 
the wing answers for 2/3 of the airplane drag at a typical cruise condition (Nixon, 1981). 

This work is an effort to optimize airfoil shapes using the NSGA concept. The optimization is performed at the 
transonic flow regime and for more than one point of operation. Here a point of operation is defined by a desired value 
of lift coefficient (Cl) and flight Mach number (Mach), at a fixed Reynolds number. The need for a multi-point 
optimization is based on the fact that, when single point optimized airfoils are evaluated in an off design condition, they 
frequently have a poor aerodynamic behavior (Antunes et al., 2003). A multi-objective genetic algorithm, namely the 
non-dominated sorting genetic algorithm (NSGA), was implemented in order to have a reasonable behavior over all the 
Mach number range of interest by means of a Pareto front concept. 

The airfoil shape was obtained by a polynomial parameterization of the thickness and the airfoil camber line, 
(Streshinsky, 1994). In this parameterization, the polynomial coefficients that describe the thickness and the airfoil 
camber line are obtained by solving simple and simultaneous equations that satisfy the imposed values for the: leading-
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edge radius, upper and lower crest location, curvatures, trailing-edge ordinate, thickness, direction and wedge angle, 
among others. The genetic algorithm, NSGA, is used to search the best values of these aerodynamic parameters at the 
desired design points or, in other words, the set of values that minimize or maximize a certain objective function. In the 
present work two objective functions, based on the drag coefficient (Cd), were evaluated at two different design points. 

 
2. THEORETICAL FORMULATION 
 

The theoretical formulation of a multi-objective genetic algorithm, in this case the NSGA, only differs from a 
single-objective approach by the form that the selection operation is performed. The theoretical formulation of the 
single-objective procedure, adopted in the present paper, is described in detail in a previous work by the present authors 
(Antunes et al.,2003). Hence, such formulation will not be repeated here and the interested reader is referred to Antunes 
et al (2003) for the single-objective algorithm upon which the present multi-objective optimization procedure is built. 
Prior to the reproduction stage of a NSGA, two steps are added. The first one consists in ranking the population based 
on the individual’s non-domination level; and the second one is the sharing function method, which is used to assign 
fitness to each individual (Deb, 1999). The non-domination ranking methodology and the sharing function will be 
described in the forthcoming subsection. Basically, the NSGA works using the following sequence of concepts: 

 
• An initial population of candidates is generated; 
• The objective function of the population is evaluated; 
• Those elements of the population which satisfy certain criteria are chosen to reproduce to the next generation; 
• New ‘individuals’ are created by the exchange of features from the ‘individuals’ previously selected; 
• Some of the ‘individuals’ created can suffer mutation. 

This process can be represented by the flowchart below. 

Begin

Initial Population

Gen = 0

Evaluation Assiign Fitness

Reproduction

CrossOver

Mutation

gen = gen + 1

Ranking

Sharing FunctionNSGA

 
                                                        
                                                      Figure 1.  Flowchart of the NSGA concept. 
 
2.1 INITIALIZATION  
 

The first step in the GA concept is to decide the strategy of coding and decoding the design variables in binary 
strings. The design variables in question are the aerodynamic parameters: leading-edge radius, upper and lower crest 
location, curvatures, trailing-edge ordinate, thickness, direction and wedge angle, among others. The following string is 
an example of a binary representation of these aerodynamic parameters. In the binary string below we have six coded 
coefficients, 
 
{{{{{{

654321
111000010010110000111010

aaaaaa
                                                                                            (1) 
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Each aerodynamic coefficient  is represented by a binary string with a certain length. The sum of all these binary 
parts generates the individual and the set of individual forms the population. The name individual is an analogy with the 
natural biology and it is responsible for the core of the GA, since they contain the vital information from the design 
variables. 

ia

In the initialization stage, a predecessor population is created. This process consists in the generation of 
‘individuals’, in which the binary strings are randomly sorted.  The lower binary string is (0000) and the upper binary 
string is the (1111). These two strings represent the  and the , respectively. The value of  and are 
defined as the bounds of the solution domain. Any other sorted binary string is contained within these two exposed 
binary extremes and the  value for it can be obtained using the following formulae to decode the information: 

min
ix max

ix min
ix max

ix

ix
 

( iaDV
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−
+= )                                                                                                                   (2) 

 
where  is the length of the binary representation of the weight coefficient, , and  is the conversion of the 
binary string that represents the  coefficient to decimal. The length, , can be computed as follows: 
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Here iε  denotes the decimal precision of the weight coefficient, . Notice that the binary string length of each 
coefficient is a function of the desired decimal precision. So, the length of the binary string grows with the increase of 
the precision desired for the coefficient. The total length of the binary string is the sum of the lengths of each binary 
coefficient representation.  

ia

One should notice that this procedure of random sort creates variability in the possible aerodynamic parameters. It 
creates possible solutions all over the solution domain and only those that are the fittest will pass to the next generation. 
The two ‘individuals’ below are an example of how different a set of aerodynamic parameters can be produced with this 
binary random sort process: 
 

.21110101001

,11111001000

0052.00025.0

0056.00029.0

Individual

Individual

321321

321321

−

−

                                                                                        (4) 

 
In this specific example, , , and 006.0min −=ix 006.0max =ix 00375.0=iε for the two coefficients a . However, one might 

choose different values of , and 
i

min
ix max

ix iε for each one of the coefficients. ia
 
2.2 EVALUATION 

 
In this step, an objective function is used to classify the solution represented by the ‘individuals’. The definition of 

the objective function depends on the problem in question. In this work, the objective function is the drag coefficient 
(Cd), which is evaluated by the MSES code for a given geometry. This evaluation of Cd is performed for more than one 
design point as the present work is concerned with a multi-objective optimization. MSES (Drela, 1996) is an Euler 
solver with a coupled boundary layer routine that takes into account the most relevant viscous effects.  
  
2.3 SELECTION 
 

It is a stage in which the ‘individuals’ are selected for the reproduction phase. There is no rule about how many 
‘individuals’ must be selected.  One can choose to select as many individuals as there were in the initial population or, 
even, one can allow for having more ‘individuals’ than in the initial population. In the latter case, an increase in 
population is being allowed. The selection procedure is very important because, depending on the selection method 
adopted, there is the possibility to create super ‘individuals’ for the next generation, causing loss of diversity. On the 
other hand, a non-elitist method produces ‘individuals’ that turn the optimization method ineffective. The idea behind 
NSGA is that a ranking selection method emphasizes the current non-dominated ‘individuals’ and the sharing function 
method maintains diversity of the population. 
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 In the first step of this NSGA implementation, the non-dominated ‘individuals’ are grouped in fronts based on the 
Cd coefficient for each design point. In order to obtain these fronts, one has to discover the non-dominated 
‘individuals’, which can be identified whenever the two following statements are satisfied:   

 
• The individual j is non-dominated if it is no worse than individual i in all the objectives,  
• The individual j is non-dominated if it is strictly better than individual i in at least one objective. 
 

Using the two statements above, one can generate the non-dominated fronts using the following steps:  
 

• For a population of size N, where each individual has M > 1 objective functions, begin with the individual            
i = 1. 

• For all ‘individuals’ j from 1 to N and j ≠ i, compare the ‘individuals’ j with i based on the non-domination 
statements. 

• If any individual j is dominated, than mark the individual j as ‘dominated’. 
• Repeat this procedure until i is equal to N. 

 
In the end of this procedure, those ‘individuals’ that are not marked belong to the first non-dominated front. To 

find the non-dominated ‘individuals’ that fit into the second front one temporarily disregards the ‘individuals’ of the 
first front and reinitialize the described procedure. The procedure must be repeated until all the ‘individuals’ are 
classified into a level of non-domination. 

Subsequently, those ‘individuals’ in the first non-dominated front (or level) receive an identical dummy fitness 
coefficient, and the sharing function strategy is responsible for updating these dummy fitness coefficient value 
emphasizing those ‘individuals’ that are isolated from the others in the same group. The sharing function strategy works 
with the ‘niche principle’, which is a biological concept. In biological terms, one can say that those ‘individuals’ in the 
same non-dominated front have a habitat with a given ‘food resource’. If one of these ‘individuals’ is far enough from 
the others, or alone, it means that it will not ‘share his food supply’, hence it will be better ‘fed’.  

Once all the ‘individuals’ of the first non-dominated front receive their updated fitness value, the lowest fitness 
coefficient of this front can be determined. Thereafter, all the ‘individuals’ in the second front   receive a dummy fitness  
coefficient value smaller than the smallest fitness coefficient from the previous front. Again, the sharing function is 
applied to this front. The process is repeated until all the ‘individuals’ in each front receive a fitness coefficient value. 
The sharing function concept stipulates that the ‘individuals’ of the first non-domination front have higher fitness 
coefficient than those of the second front, and so one. This maintains a pressure towards the Pareto-optimal solution 

The fitness coefficient value assignment using the sharing function strategy can be summarize as: 
 

• Step 1 → Get a set of ‘individuals’ in the k-th non–dominated front, each one having a dummy fitness value 
, and pick a certain i-th individual. 

kn

kf

 
• Step 2 → Compute a normalized Euclidean distance measure in relation to another j-th individual in the same k-th 

non-dominated front, (j ≠ i) 
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where P is the number of variables in the problem. The parameters  and  are the upper and the lower bounds of 

 variable. 

u
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• Step 3 → This  distance is compared with a pre-specified ijd shareσ  parameter and the following sharing function 

value is computed, 
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• Step 4 → If , increment j and go to step 2. knj <
• Step 5 →  If , calculate the niche count for the i-th individual as follows: knj =

4 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro - RJ, Brazil, - Paper CIT04-0054 
 

                                  

( ij

nk

j
i dShm ∑

=

=
1

)                                                                                              (7) 

 
• Step 6 →  Degrade the dummy fitness, , of the i-th  individual  in the k-th non-dominated front to kf

 

i

k
i m

ff =' .                             (8) 

 
• Step 7 → If  i  increment i and go to step 2,  kn<
• Step 8 → If go to step 1, get another front and repeat the process until all the ‘individuals’ in each front 

have a fitness value.  
kni =

 
At the end of this process, the roulette method (Goldeberg,1989) is applied to select those ‘individuals’ which will 

pass to the crossover stage. Basically, the chance to be selected grows with the increase of the fitness value. However, a 
high fitness coefficient does not necessarily guarantee that an individual will be selected. These selected ‘individuals’ 
will perpetuate their characteristics for the next population. That is the form in which information is processed in a GA 
concept. 
 
2.4 CROSSOVER 
 

In this process new ‘individuals’ are created by the change of features from the previously selected ‘individuals’. 
Frequently, this process leads to an improvement in the new population. There is a number of ways to execute the 
crossover (Deb and Agrawal,1995) but, in all of the methods, two ‘individuals’ are selected and in a certain position 
they exchange the binary strings. In this work the single-point crossover is implemented. The position where the 
‘individuals’ should exchange strings is randomly chosen. An illustration of a single-point operator can be seen below. 
Two ‘individuals’ are chosen to create two new ‘individuals’. 
 
 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1      Individual 1

1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1      Individual 2 
 
 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1      New Individual 1

1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1      New Individual 2 
 
 

Figure 2.  Crossover procedure for the creation of new ‘individuals’. 
 
2.5 MUTATION 
 

It is a way of keeping the diversity of the population. In this process, the binary value at an aleatory position in the 
string suffers a random inversion in his value. If it is 1, it becomes 0 and, if it is 0, it becomes 1. Mutation promotes 
diversity by allowing the optimization procedure to search for ‘individuals’ in the solution space that otherwise would 
not be contained in the current population.  
 
 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1      Individual n

1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1      New Individual n
 
 

 
                                           Figure 3.  Mutation at a certain position of the ‘individual’. 
 
3 NSGA EVALUATION 

 
An evaluation of two test cases, available in the literature, was implemented just to check the NSGA 

implementation. This evaluation procedure was performed to ensure that the optimized airfoils were not obtained by 
casual chance, but by a robust and reliable implementation. The evaluation was done with conflicting objective 
functions, and the minimum value of each objective function was pursued. The two test cases are described below: 

 

(a) First test case:                                                                                                                            (9) 
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(b) Second test case:                                                      (10) [{
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The results from this evaluation can be seen in Figs. (4) and (5). In Figure (4) one can observe that the same Pareto-

front was obtained for different sizes of population and different generations, without any dispersion around the front. 
On the other hand, in Fig. (5), one can observe the presence of a small dispersion around the Pareto-front due to the 
complexity of the function tested; as well as the effect of a variation in the population size. This dispersion is related to 
the existence of secondary Pareto-fronts, which do not represent the best Pareto-front. One can think of these secondary 
Pareto-fronts as ‘local’ optimized solutions.  

 It can be clearly seen that there is not a single solution that satisfies the optimization but a set of possible solutions, 
which form the Pareto-front. It is worth mentioning that the obtained Pareto-front matches those presented in the 
literature (Deb et al, 200) for these two test cases. These promising results show that the implementation of the NSGA 
is satisfactory and reliable, and it can, now, be used for airfoil design, which is the major thrust of the present work.  
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Figure 4. Pareto front for the first set of conflicting functions. 

 

NSGA Evaluation Function_2 
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Figure 5. Pareto front for the second set of conflicting functions. 
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4 AIRFOIL SHAPE PARAMETERIZATION 
 

The airfoil shape parameterization was obtained with the two following polynomials: 
 

4
5

3
4

2
321 xaxaxaxaxat ++++=  ,                                                                                  (11) 

6
5

5
4

3
3

2
21 xbxbxbxbxbyc ++++=  .                                                                                                                         (12) 

 
The values of the various coefficients of the polynomials are obtained from the prescribed leading-edge radius, upper 
and lower crest location, curvatures, trailing-edge ordinate, thickness, direction and wedge angle, among others. The 
NSGA is responsible to provide the best set of theses aerodynamic parameter in the sense of obtaining the lower 
possible drag. 
 
5 RESULTS 

 
Initially, using a fixed population of 30 ‘individuals’, the optimization for two design conditions was performed: 

Mach number 0.74, Cl = 0.35, and Mach number 0.78, Cl = 0.35. Subsequently, two other optimizations were 
performed with an increase in the population size to 60 and 100, respectively. These analyses were performed in order 
to assess the sensibility with respect to the minimum population size that would produce satisfactory results. 

In Fig. (6), it can be seen that the increase of the population size produced a displacement of the Pareto-Front in the 
direction of the lower level of drag coefficient. One can also notice that the increase of the population size from 30 to 60 
‘individuals’, produced a huge improvement, but the increase from 60 to 100 ‘individuals’ did not produce the same 
level of improvement. As can be seen in Fig. (6), the Pareto-front highlights a series of possible solutions, which are 
committed with the optimization at the design points. 

During a design procedure, the computational cost is an important variable. Particularly, at the preliminary design 
stage, there is the need to obtain, as quickly as possible, many potentials shapes that might be used for a wing lofting. In 
the present work, the population size of 100 ‘individuals’ was assumed as satisfactory for the desired level of 
optimization. The increase of the population size, for values higher than 100 would not produce a significant difference 
in terms of drag coefficient, however the computational cost would be considerably higher.  

 

Effect of the Population over the Pareto Front
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Figure 6. Effect of the population size in the Pareto front for two design conditions. 

 
Figure (7) shows drag rise curves for three specific ‘individuals’, each one belonging to the Pareto-front of 30, 60 

and 100 ‘individuals’, respectively, as shown in Fig.(6). These ‘individuals’ were chosen considering the minimum 
value of Cd at the two design points. One can observe that the optimized individual coming from the population size of 
100 has a range in Mach number where it has a better behavior in relation to the others. Although this solution is not the 
best for the entire Mach number range, it is still optimized and acceptable because it is just one of many possible 
solutions obtained by the Pareto-front of 100 ‘individuals’. Figure (8) shows the difference in the shape for the 
optimized airfoils. These differences are mainly related to the increase of the population size, which is responsible for 
the improvement in the drag coefficient. 
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Drag Rise Curve  ( Cl = 0.35 )
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Figure 7. Drag rise curves for three specific ‘individuals’ from each of the three Pareto front. 

 

Airfoil Geometry for the Three Pareto-Fronts

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

-0.10 0.10 0.30 0.50 0.70 0.90 1.10
X/C

Y/
C

Pareto-front   Population_100 Solution_1

Pareto-front   Population_60

Pareto-front   Population_30 

 
       Figure 8. Geometry shape for the optimized airfoils from the Pareto-fronts of 30,60, and 100 ‘individuals’. 
 

In Fig. (9), one can see a comparison between the drag rise curves for two solutions belonging to the same Pareto-
front of 100 ‘individuals’.  These two plotted curves belong to a set of 100 possible solutions and, from this set, one 
must choose which solution better possesses the desired aerodynamic characteristics. These ‘individuals’ from the same 
front are not identical to each other, and they are associated with different aerodynamic characteristics. One can also 
observe in Fig.(10), the shape of the two referred optimized solutions. These two shapes are quite similar; therefore, 
they have different aerodynamic characteristics as one can see in the drag rise curve in Fig. (9). 

A single design point optimization was performed for a Mach number 0.74, Cl = 0.35 and a population size of 100 
‘individuals’. This single design point result was compared, in terms of drag rise, with the prior optimization using two 
design points, as one can see in Fig. (11). One can observe at the Mach number range from 0.60 to 0.75, that the two-
design point optimization produces a less optimized solution in terms of Cd value. The difference with respect to the 
single design point is about 0.5 drag counts for this Mach number range. For a Mach number lower than 0.60, this 
difference has a rapid increase, achieving 2.0 drag counts at Mach number 0.5. However, for a Mach number higher 
than 0.75, the single design point optimization reaches the divergence Mach number while the two-design point 
optimization still has a very reasonable level of drag coefficient.  
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Drag Rise Curve  ( Cl = 0.35 )
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Figure 9. Comparison between two solutions of the Pareto-front from a population size of 100 ‘individuals’. 
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 Figure 10. Geometry shape for two optimized airfoils from the Pareto-front with 100 ‘individuals’. 
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Figure 11. Drag rise curve for a single optimized airfoil and a multi design point optimized airfoil. 
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The presented results show that, one cannot support the two-design point as a better approach than the single 
design point optimization, and vice-versa. This substantiation is based on the fact that the obtained shapes are optimized 
at their respective design points. In the present case, the two-design point shape has a Cd value not as optimized as the 
single design point at Mach number of 0.74. This difference is most certainly related with the constraint imposed to the 
obtained shape of the two-design point airfoil to achieve a reasonable Cd value at Mach number of 0.78. 

Considering solely the two-design point optimization, one can observe that there is an increase in the Cd value for 
Mach numbers lower than 0.60. Perhaps, the lack of a design point at a lower Mach number might be driving the 
Pareto-front to solutions characterized by an excessive Cd value at this range of Mach number. A way to diminish this 
undesired level of Cd at Mach numbers below 0.60 is to prescribe a third point of design. The logical choice for this 
third point should be at a Mach number below or equal to 0.60. By such an approach, one would try to guarantee that 
the optimization is performed for a wider range of Mach numbers. Since, the main concern of this work is related to the 
performance at transonic speeds, the degradation at lower Mach numbers is being accepted in benefit of the 
improvement achieved in the transonic range. Hence, this test with the imposition of a third design point was not 
performed in the present work. 
 Figure (12) shows the difference between the airfoil shapes obtained using the single or the two-design point 
optimization. The shape differences produce Cp distributions with different characteristics as one can observe in Figs. 
(13) and (14). At Mach number 0.60, the two-design point optimization has a suction peak higher than the single design 
point optimization, generating a higher value of Cd as mentioned before. But, for a Mach number of 0.78, the single 
design point optimization has a shock wave much stronger than the two-design point optimization, leading to drag 
divergence of this airfoil as indicated in Fig. (11). 
 

Airfoil Geometry Comparison between a Mono_Design 
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Figure 12. Geometry shape for the single design point optimized airfoil and the two-design point optimized airfoils. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Comparison between the single design point optimization and the multiple design point optimization at Mach 

number 0.60.  
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Figure 14. Comparison between the single design point optimization and the multiple design point optimization at Mach 

number 0.78.  
 
6 CONCLUSIONS 
 

The optimization process using a NSGA showed to be satisfactory in the search for an airfoil shape that attempts to 
be optimized in more than one design point. In the study cases of this work, it was shown that the two-design point 
optimization produced a postponement of the drag divergence and a lower level of drag coefficient for higher values of 
Mach number.   
 The lack of a design point at lower values of Mach number might have driven the obtained Pareto-front to 
solutions that allow larger Cd values at this range of velocity.  It is believed that, for each design point (Mach number) 
there are some geometrical characteristics that obtain minimum achievable value of Cd. When a multi-design point 
optimization is being performed, one can never get the perfect aerodynamic shape for each design point. However, the 
optimized solutions are a trade off among the several design points. In general terms, one is responsible to take the 
decision of what is an acceptable aerodynamic characteristic at a certain Mach number range. In the present work, the 
improvement obtained at a higher Mach number was satisfactory, in spite of a lower performance at lower Mach 
numbers. But, sometimes one might not accept this degradation at lower velocities and, then, perform an optimization 
using an extra point to ensure a decrease in the Cd value for the low Mach number range. 

In this work no more than two points of design optimization were studied, and the limit of design point is the 
computational cost that one is forced to pay. The computational costs were not so high in the present case because the 
authors have used a two-dimensional Euler formulation with boundary layer correction, which is the physics contained 
in the MSES code, in order to obtain the objective function. Therefore, as one decides to follow on to a higher fidelity 
code to obtain the objective function, as for example the use of a Navier-Stokes solver with advanced turbulence 
modeling, the cost of a design cycle can become extremely expensive. 
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