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Abstract. The ice accretion in aircrafts happens when they fly through clouds containing super-cooled water droplets that impinge 
on the leading edge of the surfaces and freeze, changing the geometry and affecting the aerodynamic characteristics. The 
mathematical model considers the mass and energy balances for control volumes located over the surface, so that the temperature 
and the freezing rate can be computed. The mass balance accounts for the impinging water, evaporation, runback and freezing, 
while the energy balance considers the air and water kinetic heating, evaporative cooling, convection, conduction, sensible energy 
and latent heat due to phase change. The impinging water flux, heat transfer coefficient, pressure and skin friction are calculated 
from the external flow solution. In this paper, two approaches are presented. The first considers the potential flow assumption and 
uses the panel method with boundary layer integration. The water droplets flow is computed by a Lagrangean formulation, in which 
the droplets trajectories are calculated and the impingement positions provide the collection efficiency. The second approach 
consists in solving the two-phase (air-water) flow around the geometry by using a two-fluid model implemented in the commercial 
CFD software CFX (Ansys, Inc. 2003) The key issue of applying the boundary condition for the two phase flow in the commercial 
software is addressed. In this case, the water impingement flux is provided directly from the flow solution. Ice shapes are obtained 
by using these two approaches for the external flow solution and are compared for several icing conditions. 
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1. Introduction 
 

This paper shows results for ice shapes accreted on the leading edge of an airfoil by solving the external 
aerodynamics problem with two different methodologies. One considers the external flow as potential and uses the 
panel method (Hess and Smith, 1967) followed by a boundary layer integration for viscous and heat transfer effects and 
a Lagrangean “particle-tracking” approach for the water droplets trajectories computation (Silveira, 2001 and Silveira 
and Maliska, 2001). The other methodology consists in solving the external flow around the airfoil by using the two-
fluid model, implemented in the CFX package in which both air and water droplets are treated as continuum phases and 
the water flux impinging the surface is provided from the flow results at the wall. This model was proposed and used in 
Silveira et. al (2003). 

The external flow solution plays a very important rule in the aircraft icing analysis. This encouraged the 
development of new methodologies to take into account more physics and to deal with more complex geometries. 
Earlier works use to consider the first methodology, as in the codes Lewice (Wright, 1995), Canice (Morency et al, 
1999) and Trajice2 (Gent, 1994), and in the work of Silveira (2001). In the icing code of ONERA (Hedde et al, 1995), 
the complete potential flow equation, including compressibility effects, is solved using a finite-difference scheme. All 
these models use boundary layer integration for thermal and viscous effects and droplets trajectories calculation for 
collection efficiency. This methodology takes advantage for being relatively simple and fast. However, for complex 
geometries, especially for 3D cases, the “particle-tracking” approach becomes difficult to implement and is 
computationally very expensive. Besides, the potential flow assumption is limited to low Mach numbers and low angle 
of attack. 

To deal with complex geometries and flow conditions, the Eulerian-Eulerian approach has been applied 
successfully for icing analysis. The code Fensap-Ice (Bourgault et al, 2000) computes the two-phase flow by assuming 
that the droplets do not affect the airflow, therefore, considering them as a passive scalar. A finite element approach is 
used to solve the transport equations. The work of Naterer (2002) was developed for ice accretion on electricity 
transmission lines, in which the flow is considered full multiphase, that is, the water droplets are also assumed to affect 
the airflow. In this case, the same equations solved for the airflow are also solved for the water droplets (disperse 
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phase). In a recent research, Silveira et al (2003) and Silveira (2004) used the two-fluid model, analogous to Naterer 
(2002), implemented in the commercial code CFX, to solve the external aerodynamics problem.  

External flow results, like collection efficiency, heat transfer coefficient, wall shear stress and pressure distribution 
at the wall, in addition to the environment conditions, such as velocity, static pressure and static temperature, are the 
input data for the thermodynamic model. Basically, it consists in carrying out a coupled mass-energy balance in each 
control volume defined over the surface of the geometry, so that the freezing rate is computed and the ice thickness is 
obtained for each finite segment defining the surface. This approach is used in Wright (1995) and Silveira and Maliska 
(2001) and it is based in the work of Messinger (1953). 
 
2. The external flow calculation 
 

This section describes the two approaches used for the external flow computation, the panel method with boundary 
layer integration and droplets trajectories calculation, and the two-fluid model for the two-phase (air-water) flow around 
the body. Since the thermodynamic model is two-dimensional, the external flow is computed for 2D geometries, even 
though the Eulerian approach is formulated for 3D flows. 
 
2.1. The Lagrangean approach 
 

In this methodology, the external flow is considered two-dimensional and solved in three parts: first, pressure and 
velocity distributions at the wall (potential flow) are computed using the panel method, widely used in aeronautical 
applications and, therefore, not shown here. A detailed description of such a methodology can be found in Hess (1967) 
and Silveira (2001). Then, the hydrodynamic and thermal boundary layers are solved by using integral methods. For the 
hydrodynamic boundary layer, the Kármán-Pohlhausen (Schlichting, 1979) method is applied, where an ordinary 
differential equation for the momentum thickness is integrated, providing 
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where U = U(x) is the potential flow velocity, provided by the panel method and x is the surface coordinate measured 
from the stagnation point toward the trailing edge. The wall shear stress is derived from a fourth-order polynomial 
velocity profile and is given by 
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where δ is the boundary layer thickness, which is computed from 
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The shape factor Λ is obtained from the solution of a non-linear equation written as 
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For the thermal boundary layer, the Smith-Spalding’s method (Schilichting, 1979) is used, in which one has the 

thermal boundary layer thickness calculated from  
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In this case, the Nusselt number is given by 
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where c is the cord length of the airfoil. From the Nusselt number, the heat transfer coefficient is readily obtained. 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 
 

The third part of the external flow calculation is to compute the water droplets trajectories. In this procedure, a 
droplet is released in a position far enough from the body, where free-stream conditions take place. The droplet is 

dragged by the airflow, according to the force balance shown in Fig. (1), where aV , pV  and ∞V  are the air, particle 
(droplet) and free-stream velocities, respectively. 
 

 
 

Figure 1: Drag force acting on a water droplet. 
 
The trajectories are then governed by the following equations 
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where m is the mass of the droplet and γ is the angle between the droplet and air velocity vectors. The drag force is 
expressed in terms of a drag coefficient, according to 
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in which ρa is the air density, V is the relative velocity between the air and droplet and Ap is the projected area of the 
droplet. The drag coefficient is obtained from the Schiller-Naumann correlation (Ansys Inc., 2003 and Silveira et. al, 
2003), given by 
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Figure 2: Droplets trajectories near the airfoil leading edge. 
 

The trajectories are computed until they impinge against the wall or until a pre-defined position in the case when 
they miss the body. The collection efficiency is the ratio between the wall and free-stream water fluxes, which can be 
expressed as 
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Since the mass flow is constant between two streamlines, one can write 
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wallmm && =∞  (12) 
 
In terms of fluxes, the above relation can be written, according to Fig. (2), as 
 

smym wall0 ∆′′=∆′′∞ &&  (13) 
 

and the collection efficiency will be given by 
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2.2. The Eulerian-Eulerian approach 
 

In this kind of methodology, both air and water droplets are treated as continuum phases, and that transport 
equations are solved for the two “fluids”. Here, the concept of phase volume fraction is introduced, which is the portion 
of a control volume “filled” by that phase, according to 
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where Vi is the volume occupied by phase i, being i = 1 for the air (continuum phase) and i = 2 for the water (disperse 
phase). 

In this work, as in Silveira, et al (2003) and Silveira (2004), the two-fluid model is used for solving the external 
flow. In this model, the water droplets (disperse phase) also affect the airflow, differently of the the work of Bourgault 
et.al (2000) and of the lagrangean approach, where only the influence of the airflow on the water droplets is considered.  

By using this concept, the continuity equation for the phase i is written as 
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The momentum equation, considering the Reynolds averaging for turbulence, is also solved for each phase and is 

given by 
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in which ip′  and µeff,i are the pressure and effective viscosity of the phase i, respectively. Si is related to momentum 
sources due to external forces (gravity, for example), which are neglected, and Mi represents the interfacial forces. In 
this work, drag is the only interfacial force to be considered. Then, the drag exerted by the water droplets (i = 2) on the 
airflow (i = 1) is expressed as 
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where d2 is the droplets mean diameter and r2 is the volume fraction of the phase 2. The drag force acting on the 
droplets is given by the same expression, except for the volume fraction, which is for the air (r1). The drag coefficient is 
given by the same correlation by Shiller-Naumann, as was already mentioned. 

The turbulence modeling considers the κ-ε model for the airflow and a zero-equation model for the dispersed phase, 
where the eddy viscosity is assumed being proportional to the continuum phase eddy viscosity.  

The heat transfer problem is governed by the energy equation for multiphase flow, given by 
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where cp,i, ki, µt,i and σt,i are the specific heat, conductivity, eddy viscosity and turbulent Prandl number for the phase i, 
respectively. There is not available relation for σt,i, so the value of 0.9 is usually adopted. In this work, is assumed that 
the phases share the same temperature field, even though one can consider inter-phase heat transfer. The volume 
fraction conservation (r1 + r2 = 1) and the same pressure field for both phases (p1 = p2 = p) are the closure relations. 
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The boundary conditions are free-stream flow at INLET boundary and prescribed pressure at the OUTLET 
boundary, as defined in Fig. (3). The free-stream value for the water volume fraction is obtained from the LWC (Liquid 
Water Content), which is an environment condition. The WALL boundary is the most complex to deal with, since one 
wants to compute droplets “impact” velocities on the surface. In the real problem, the water impinging the surface can 
be seen as “leaving” the domain through the wall, while air flows around the body. To simulate the impingement effect, 
the wall is treated as an Outlet boundary for the disperse phase (water droplets), with no pressure imposed there, and a 
free-slip wall for the airflow. However, Outlet boundary condition may allow flow from the wall to the computational 
domain (which would be unphysical). Applying zero velocity derivative is not sufficient to represent the correct 
physical behavior. The procedure adopted here is to compute the normal component of the water velocity vector at the 
surface. If it “enters” the wall, it set to zero, otherwise it is the correct and it represents the impinging velocity at the 
wall. Such a condition is named degassing condition and it was implemented in the CFD software CFX (Ansys Inc., 
2003) to model free-surface flows of water with air bubbles, and it was first adapted for icing analysis in Silveira et. al 
(2003). 

 

 
 

Figure 3: Definitions of the domain boundaries for application of the boundary conditions. 
 

The collection efficiency in the Eulerian approach is computed directly from the flow results. Since β is the ratio 
between the wall and free-stream water fluxes, as in Eq. (11), one has 
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where walln

r
 is the unit normal vector at the wall outward the domain and the sub-index 2 refers to water values. 

 
3. The thermodynamic model 
 

The amount of ice accumulated on the leading edge of an aerodynamic surface may be computed by a coupled 
energy-mass balance in control volumes defined over the external surface, which can be the metallic material or an ice 
layer, as in the Messinger model (Messinger, 1953). In this work, according to Silveira (2001), the control volumes 
have the same length of the segments defining the external surface, and the thickness equivalent to the thickness of a 
water film that would exist if no water were frozen, as in Fig. (4). 

 

 
 

Figure 4: Control volumes over the external surface. 
 
The mass balance accounts for water impingement, evaporation, runback water and freezing, according to Fig. (5). 

Water droplets freeze immediately when they hit the surface, since they are in a meta-stable equilibrium state. 
Depending on the surface temperature and the total latent heat released due to freezing, a liquid film lies over the ice 
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layer or the metallic surface. Then, part of this film can evaporate, flow over the surface (runback water) or freeze in a 
downstream position. 

Balances begin at the control volumes adjacent to the stagnation point, where there is no runback water entering 
these control volumes, and follow toward the trailing edge through the upper and lower surfaces. The mass balance can 
be written as 

 
ymysmysmysmym ssout,rbfreezeevapimpsin,rb ∆δ′′+∆∆′′+∆∆′′=∆∆′′+∆δ′′ ∆+&&&&&  (21) 

 
in which ∆y is the dimension of the control volume in the span direction of a wing, for example. Since the model is two-
dimensional, one can consider ∆y = 1.  

 

 
 

Figure 5: Mass balance in a control volume. 
 
The impingement flux is computed in terms of the collection efficiency as 
 

∞β=′′ ULWCmimp&  (22) 
 
in which LWC is the liquid water content, which is an environment condition and is an input data for the model. The 
evaporation flux is related to concentration and temperature gradients across the boundary layer and it is expressed as 
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in which h is the heat transfer coefficient, Mw is the molecular weight, Le is the Lewis number, rh is the relative 
humidity (input data) and pv is the vapor pressure. The sub-index “s” means the surface and “o” is related to stagnation 
properties. More details about this term can be found in Silveira (2001), Silveira and Maliska (2001) and Wright (1995).  

The freezing flux is computed by defining the freezing fraction, which is the fraction of water that freezes in the 
control volume and it is obtained from the enthalpy formulation for phase change problems (Silveira, 2004) as 
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in which Tm is the melting temperature of ice (273.15 K) and ∆Tm is a range around the melting temperature in which 
the water is assumed to freeze. Then, the freezing flux is given by 
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Since there is no runback water entering the control volume adjacent to the stagnation point, the mass balance can 
be written for the runback flow leaving the control volume in the form 

 
( ) smmmmm freezeevapimpin,rbout,rb ∆′′−′′−′′+= &&&&&  (26) 

 
The runback water leaving a control volume will be the runback water entering the next control volume. The film 

thickness and the film average velocity can be computed by assuming a linear velocity profile and applying zero 
velocity at the wall and momentum flux continuity at the interface with the external flow (Silveira, 2004).  
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Some of the terms in the mass balance depend on the control volume temperature, which is assumed being the 
surface temperature. This temperature is obtained from an energy balance in the same control volume used for the mass 
balance, according to Fig. (6). 

 
 

Figure 6: Energy balance in the control volume. 
 
The energy balance accounts for sensible heat lost to the impinging droplets ( imp,sq ′′& ), sensible heat transfer due to 

runback water ( rb,sq ′′& ), kinetic heating from the airflow ( air,keq ′′& ), kinetic heating due to droplets impact ( water,keq ′′& ), 
convection heat losses ( convq ′′& ), evaporative cooling ( evapq ′′& ), conduction into the metal or ice layer ( condq ′′& ) and latent heat 
released during solidification ( latq ′′& ). Then, it can be written as 
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where each heat flux already has its correct signal. The kinetic heating due to friction from the airflow, kinetic heating 
due to droplets impact and the heat lost by convection are given respectively by 
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where imp,wU  is the water impact velocity at that position, T∞ is the free-stream temperature, Ts is the surface 
temperature and Tr is the recovery temperature. The latent heat released during the solidification and the evaporative 
cooling depend on the freezing flux and evaporation mass flux, respectively, and are expressed as 
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where hsl and hlv are the latent heats of solidification and evaporation of water, respectively. 

 The metallic layer, as well as the ice layer, when it exists, is treated as a semi-infinite solid (Incropera, 1998), for 
the conduction heat flux one has 
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where k and α are the thermal conductivity and thermal diffusivity of the metallic material or the ice, respectively. 
Since this term is time dependent, a time-integrated average value is used in the simulation.  

Finally, the sensible heat due to the runback water depends on the surface temperature according to 
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where Trb,in is the runback temperature (temperature of the upstream control volume). For the sensible heat lost due to 
the impinging droplets entering the control volume, the expression is analogous, therefore 
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The energy balance is solved for the control volume temperature by using an iterative method (Newton-Raphson in 
this work). For each iteration, and temperature correction, the mass balance is recomputed to account for the 
temperature change. 

The result of the balances is the freezing flux, which is used to compute the ice thickness for each segment of the 
external surface, by assuming that the freezing flux is constant along a time step, according to 
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The procedure consists in solving the external surface for the clean geometry, computing the ice thickness for a pre-

defined time interval by applying the thermodynamic model, and changing the surface by adding the ice thickness. The 
external flow is solved again for this new geometry and another ice layer is added. The procedure is repeated until the 
desired time. A more detailed description of the thermodynamic model can be found in Silveira (2001), Silveira and 
Maliska (2001) and Wright (1995). 

 
4. Results  
 

In this section, some results for ice accretion on airfoils are presented by using the two approaches described for the 
external flow calculation. Table (1) summarizes the flow conditions for the simulations. For cases 1 to 3, ice shapes 
provided by these two formulations are compared with experimental and simulated results provided by the Lewice code, 
all of them available in Wright et. al (1997). For cases 4 to 6, the ice profiles are compared with experimental obtained 
from Addy Jr. (2000). The results are denoted by “Aeroicing Lagr.” for the external flow solved with the Lagrangean 
formulation and with “Aeroicing CFX” when it is done with the Eulerian approach. The first two cases are for rime ice, 
where there is no runback water and all of the water impinging the body freezes. The other cases are for glaze ice 
conditions, in which there is some runback water flowing over the surface, so that the thermodynamic behavior of the 
system is more complex.  

 
Table 1: Summary of simulated cases. 

 
Cases 1 2 3 4 5 6 
Airfoil NACA 0012 NACA 0012 NACA 0012 Business jet Business jet Business Jet 

Chord(m) 0.5334 0.5334 0.5334 0.9144 0.9144 0.9144 
AOA (°) 4 4 4 6 1.5 6 
V∞ (m/s) 58.1 93.8 58.1 90.02 128.61 90.02 
T∞ (K) 245.2 242.5 266.3 268.15 262.95 266.95 

P∞ (kN/m2) 95.61 92.06 95.61 117.21 200.64 195.12 
MVD (µm) 20 20 20 20 20 15 

LWC (g/m3) 1.3 1.05 1.3 0.54 0.54 1.0 
Time (min) 8 6.2 8 6 6 15 

 
Figure 7 and Fig. (8) show results for the rime ice simulations (cases 1 and 2). For these cases, the free-stream 

temperature is lower and all of the water impinging the surface freezes, so that the mass balance reduces to the 
impingement and freezing fluxes. The profiles point out that the methodologies for the external flow calculation are 
equivalent for these cases, since the ice shapes and ice mass depend directly on the collection efficiency, which is being 
correctly calculated. 

For cases 3 to 6, shown in Fig. (9) to Fig. (12), one has glaze ice conditions, in which a part of the impinging water 
does not freeze and flows over the surface. The runback water may freezes at downstream positions, giving rise to the 
“ice horns”. Glaze ice occurs for free-stream temperatures closer to the phase change temperature and the heat transfer 
coefficient is very important in the heat balance. The results show that the Eulerian approach provides better ice shapes 
than the Lagrangean approach does for theses cases, as a consequence of a more accurate heat transfer coefficient 
calculation. Figure 10 shows that the Lagrangean approach yields a better fitting with the experimental profile for case 
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4, especially in the “ice horn” region. However, it can be observed that the amount of ice is better predicted by the 
Eulerian approach. In the other cases, the Eulerian approach predicts both shape and amount of ice better than the 
Lagrangean does. 

The difference in results can be attributed principally to the boundary layer transition prediction. The Navier-Stokes 
equations, associated with a good turbulence model (SST was used in this work) can provide good transition process, 
while the integral methods depend on prescribing a transition point or computing a value based on some criteria 
(Reynolds number based on the wall roughness was used in this work). 

 

 
 

Figure 7: Ice shapes results for case 1. 

 
 

Figure 8: Ice shapes results for case 2. 
 

 
 

Figure 9: Ice shapes results for case 3. 

 

 
 

Figure 10: Ice shapes results for case 4. 
 

 
 

Figure 11: Ice shapes results for case 5. 

 

 
 

Figure 12: Ice shapes results for case 6. 
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5. Concluding remarks 
 
This paper has shown the predictions of ice shapes obtained with two approaches for the external flow calculation. 

The results show that the Eulerian approach can provide better results than the Lagrangean approach in glaze ice 
conditions. However, the two-fluid model requires much more computational effort related to panel method with 
boundary layer integration and “particle-tracking” for simple 2D geometries. For 3D geometries, the Eulerian approach 
is more suitable, since the water mass flux impinging the surface is computed directly from the flow solution. In the 
case of particle-tracking approach, the impingement position of each droplet must be computed, which is a very difficult 
process for complex geometries. 

The boundary condition for the water droplets in the Eulerian approach (implemented in the CFX software), 
advanced in Silveira, et al (2003) was successfully applied and can be still explored to yield even better results. The 
weak point of this formulation is the high computational cost, since one has to compute the airflow with no-slip 
condition at wall, for the shear stress computation, and then solve the two-phase flow to obtain the collection efficiency. 
Effort has been dedicated to change this boundary condition in the software for considering a no slip-wall condition for 
the continuous phase (Silveira, 2004). 
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