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Abstract. Visualizations of the 3-D flow in a 4:1 square-square sudden contraction were  carried out for two Boger fluids with 
different degrees of elasticity (100 and 300 ppm of polyacrylamide (PAA) in 91% glycerine, 7.5% water and 1.5% NaCl), under 
conditions of negligible inertia (Re1 < 0.1). The rheology of the fluids was well characterised in steady and oscillating shear flows 
prior to the fluid dynamic investigations, based on streak-line photography and laser light illumination. For both PAA solutions the 
length of the recirculation region in the middle plane has a non-monotonic variation with flow elasticity. Initially, xR H1  
increases at low Deborah numbers to a maximum at about De1=0.1, then it decreases as De1 tends to 0.2. For the less elastic fluid 
(PAA 100) the vortex even disappeared whereas for the PAA 300 fluid a minimum xR H1 ≈ 0.15 was observed. As flow elasticity 
increased further, a tendency was observed for divergence of the streamlines approaching the contraction plane prior to a 
significant increase in vortex length. Values of xR H1  exceeded 0.9, as Deborah number reached about De1≈ 0.7 to 0.8, when 
elastic instabilities set in leading to periodic unsteady flow. 
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1. Introduction  
 

Sudden contraction flows are classical benchmark problems in computational rheology (Hassager, 1988), and a 
large number of visualization studies in planar and axisymmetric contractions have been published in the literature. In 
these simple configurations, the flow behaviour of non-Newtonian fluids can be very surprising, and different flow 
patterns have been observed even for fluids with apparently similar rheological properties. 

The first visualizations in circular contractions for viscoelastic fluids were carried out by Cable and Boger (1978a, 
1978b, 1979) and Nguyen and Boger (1979), who reported a dramatic growth of the salient corner vortex for shear rates 
higher than a critical value above which the normal stress grew quadratically. These experiments were performed for 
contraction ratios in the range 7.67:1 to 14.83:1 and at very high Weissenberg numbers the flow became asymmetric 
and eventually time-dependent. In 1986 Boger et al investigated the behaviour of Boger fluids with similar steady and 
dynamic shear properties and found different vortex dynamics, thus concluding that a different fluid property had to be 
taken into account. In his 1987 review paper Boger suggested extensional viscosity as that property, and described in 
some detail the sequence of flow dynamics in the sudden contraction. For some fluids, only a corner vortex exists, 
which grows in size as elasticity increases whereas for other fluids the corner vortex extends to the re-entrant corner 
near which a lip vortex is formed. For high contraction ratios the two vortices are initially separate, as also seen by 
McKinley et al (1991) in his 4:1 contraction experiments. As the elasticity increased the lip vortex grew at the expense 
of the corner vortex, while the length of the recirculation remained fairly constant. Eventually, the lip vortex occupied 
the whole contraction plane region and a further increase in the Weissenberg number lead to an increase of the now 
concave shaped vortex. At higher Weissenberg numbers a small pulsating lip vortex appeared and lead to unsteady 
behaviour. 

The relevance of extensional viscosity was also emphasized in the experimental investigations of White and Baird 
(1986) in a planar contraction with polystyrene (PS) and low density polyethylene (LDPE): whereas a vortex was found 
for the LDPE, it was absent from PS and the difference was attributed to their different extensional viscosities. This was 
further emphasised when they used later (White and Baird, 1988) a constitutive equation that represented correctly the 
measured extensional viscosity of both fluids and were able to numerically predict the different vortex patterns 
observed in 1986. In the mid 1980’s the experimental work on the 4:1 contraction flow concentrated on assessing the 
various flow transitions and instabilities and used several experimental techniques, as in McKinley et al (1991).  
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 Soon after the beginning of the experimental investigations on axisymmetric contraction flows, the effect of 
different contraction geometries was also assessed. Flow in planar contractions were experimentally studied as early as 
1982 by Walters and Webster, who found no significant vortex activity for Boger fluids in the 4:1 case, in marked 
contrast to observations in 4.4:1 circular contractions. However, for shear-thinning fluids the vortex activity was 
significant in both planar and axisymmetric geometries. To help clarify these differences, Evans and Walters (1986) 
forced shear-thinning elastic fluids through various planar contractions (contraction ratios of 4:1, 16:1 and 80:1) to find 
vortex enhancement even in the smaller contraction and its intensification with both contraction ratio and fluid 
elasticity. For the larger contraction, however, a lip vortex was found and a growth mechanism similar to that found for 
circular dies was seen, whereas in the 4:1 contraction only the corner vortex was observed. In 1988 Evans and Walters 
looked at the behaviour of Boger fluids in the 4:1 contraction to find a small lip vortex, but without a connected corner 
vortex. Both the corner and lip vortices were reduced and here fluid inertia played a critical role. This independence of 
lip and corner vortices has also been found recently, in the numerical simulations of Alves et al (2003a) for Boger fluids 
represented by the Oldroyd-B model. Detailed experiments, including velocity measurements by LDA, were carried out 
by Quinzani et al (1994) for the 4:1 planar geometry. 

The surprisingly different behaviours of Boger fluids in circular and planar contractions has been recently 
confirmed by the careful experiments of Nigen and Walters (2002): experiments were conducted with both Newtonian 
and Boger fluids having identical shear viscosities and it was quite clearly demonstrated that, although there were 
higher extensional strain rates in the planar geometry than in the circular die, virtually no vortex enhancement was 
found in the former geometry whereas dramatic vortex enhancement for the Boger fluids was found in the latter. 

Flow in square-square contractions has captured less attention, but by no means is unknown: Walters and Webster 
(1982) basically found similarities between the flows through circular and square-square contractions, whereas the 
differences between the flows in planar and circular contractions were confirmed by Walters and Rawlinson (1982) to 
occur also between planar and 13.3:1 square-square contractions. The experiments and numerical calculations of 
Purnode and Crochet (1996) also found similarities between the main flow features in 2D and 3D flows, and they 
concluded that lip vortices should not be associated with inertial effects. However, these authors also found that full 
capture of three-dimensional effects required 3D computations and especially an accurate representation of fluid 
rheology. In this geometry, and in contrast to the 2D planar case, the pressure can close in the tangential direction as for 
the axisymmetric geometry, but the loss of axisymmetry leads to normal stress imbalances that create secondary flows 
and the dynamics of the vortices in combination with the secondary flow structures and fluid elasticity are still to be 
understood. 

In conclusion, it is clear that much less is known for the square-square contraction than for the circular or 2D planar 
contractions, and this is the motivation of the present work, which concentrates on general characteristics of the flow for 
elastic fluids of constant viscosity. In the next Section the experimental apparatus, the experimental techniques and the 
rheology of the fluids are discussed in detail. Then, in Section 3, results of the visualizations are presented and 
discussed prior to closure of the paper. 
 
2. Experimental conditions 
 
2.1. Experimental rig 
 

The experimental apparatus is schematically depicted in Fig. 1(a). The rig consisted of two consecutive square 
ducts of length 1000 mm and 300 mm, having sides of H= 24.0 mm and h= 6.0 mm, respectively, thus defining the 4:1 
contraction ratio, and a vessel. The flow rate was set by an adequate control of applied pressure on the upstream duct 
and frictional losses in the long coiled pipe located between the duct and the vessel, at the bottom of the rig. To achieve 
low flow rates this coiled 8 m long pipe had a diameter of 4 mm, whereas for higher flow rates a larger 6 mm diameter 
coiled pipe was used. Applied pressure was kept between 0.5 and 4 bar and the dashed lines in Fig. 1(a) represent the 
pressurised air lines. The flow rate was measured by a stop-watch and the passage of the liquid free-surface at two 
marks in the upper duct. In all tests the fluid temperature was measured and the fluid properties were taken from the 
rheometric master curves shown in the next section.   

A 10 mW He-Ne laser light source was used to visualise the flow patterns. The laser beam passed through a 
cylindrical lens to generate a sheet of light illuminating highly reflective tracer particles suspended in the fluid (10 µm 
PVC particles, circa 15 mg/kg fluid). The streaklines were recorded using long time exposure photography with a 
conventional camera (Canon EOS300 with a macro EF100 mm f/2.8 lens), as sketched in Fig. 1(b), which includes a 
schematic representation of the test section. 

 
2.2. Rheological characteriation of the fluids 
 

Four fluids based on mixtures of glycerine and water were investigated: two viscous Newtonian fluids (designated 
by N85 and N91) and two Boger fluids (PAA100 and PAA300). Their compositions and the corresponding densities are 
listed in Tab. (1). The Boger fluids were prepared by dissolving a small amount of polyacrylamide (PAA - Separan 
AP30 produced by SNF Floerger) in the Newtonian solvent N91. To minimize the intensity of shear-thinning, a small 
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amount of NaCl is used, as described in detail in Stokes (1998). To avoid bacteriological degradation of the solutions, a 
biocide was also added (Kathon LXE from Rohm and Haas). The fluid densities were measured at 21.2°C with a 
picnometer. 

The shear viscosity ( η) and the first normal stress difference coefficient ( Ψ1) in steady shear flow, and the rigidity 
and loss moduli (G', G") in dynamic shear flow were used to characterize the rheology of the Boger fluids. These 
properties were measured by an AR2000 rheometer from TA Instruments, using a cone-plate set-up with 40 mm 
diameter and 2° angle. A falling ball viscometer from Gilmont Instruments (ref. GV-2200) was also used for some 
viscosity measurements with the Newtonian fluid. 
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Figure 1- Experimental flow rig: (a) Schematic representation of rig (PR- pressure regulator; V1 to V6- ball valves; R- 
reservoir; CL- cylindrical lens); (b) Flow visualization technique and test section. 

 
Table 1- Composition and properties of fluids (mass concentrations). 

Designation PAA [ppm] Glycerine [%] Water [%] NaCl [%] Kathon [ppm] ρ  [kg/m3] η0 [Pa.s] 
N85 - 84.99 15.01 - 25 1221 0.125 
N91 - 90.99 7.51 1.50 25 1250 0.366 

PAA100 100 90.99 7.50 1.50 25 1249 0.520 
PAA300 300 90.97 7.50 1.50 25 1247 0.740 

 
2.2.1. Newtonian fluids 
 

For the N85 and N91 fluids the shear viscosities were η= 0.125 Pa.s and 0.366 Pa.s at 18°C and 20°C, respectively, 
the temperatures at which the visualizations took place. Fluid N91, which served as solvent for the PAA solutions, was 
also used to evaluate the accuracy of the instrument and to establish the base noise level in dynamic tests. For shear 
rates between 1 and 1000 s-1, the viscosity of fluid N91 was correctly measured and varied less than 2%, well within 
experimental uncertainty. For N1, the measurements at γ  < 100 s-1 indicated zero reading within experimental 
uncertainty, as it should. The uncertainty in measuring N1 is of the order of ±10 Pa, in agreement with the 
specifications of the manufacturer for the cone-plate geometry used. For γ > 100 s-1 inertial effects become important 
and N1 becomes negative. The effect of inertia on N1 for Newtonian fluids is well quantified by 

N1,inertia = −0.15ρω2R2 (Barnes, 2000), but these results are not shown here for conciseness (more details in Alves, 
2004). 

The effect of temperature on the shear viscosity for the N91 fluid is well predicted by an Arrhenius equation, 
defining a shift factor aT  of the form  

ln aT( )= ln η
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where η0 represents the viscosity at the reference absolute temperature T0, and the fitting of this equation to the 
experimental data gave ∆H R =  6860 K (more details in Alves, 2004).  
 
2.2.2. Boger fluids 
 

For the Boger fluids the steady shear properties were measured at temperatures ranging from 15.3° C to 30° C, and 
the time-temperature superposition technique was found to be valid for both Boger fluids and used to build master 
curves with the same estimated value of ∆H R  as for the solvent. The reduced shear data are plotted as symbols in 
Figs. 2(a) and 2(b) for the PAA100 and PAA300 fluids, respectively. Both figures include dynamic shear data in 
appropriate form ( η'r , 22 ' /r rG ω  vs. ωr ) in order to compare the corresponding limiting behaviour at vanishing 
deformations. The lines represent predictions by three-mode Oldroyd-B constitutive equations that were fitted to the 
experimental data. The parameters of these fitted Oldroyd-B models are listed in Tab. (2), at reference temperature. 
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Figure 2- Material parameters in steady ( η, Ψ1) and oscillating (G’, η' ) shear flow for the Boger fluids: (a) PAA 100; 
(b) PAA 300. Lines represent fitting by a three-mode Oldroyd-B model. 

 
Table 2- Linear viscoelastic spectra for the Boger fluids at T0 =293.15 K. 

 

 ηk  [Pa.s] 
Mode k λk  [s] PAA100 PAA300 

1 3.0 0.075 0.23 
2 0.3 0.027 0.09 
3 0.03 0.018 0.05 

solvent - 0.40 0.37 
 

The data in Figs. 2(a) and 2(b) show well the limiting behaviour of the properties measured in steady and 
oscillating shear flows. The reduced shear viscosity is approximately constant at reduced shear rates in the range 0.3 to 
50 s-1 for the PAA100, whereas for the PAA 300 it decreases approximately 10% per decade of reduced shear rate. At 

rγ =54 s-1 and 28 s-1 (for the PAA 100 and PAA 300, respectively) there is an abrupt growth in ηr  and Ψ1r  and this is 
accompanied by a slight reduction in reduced shear rate (with the rheometer operating in “controlled stress mode”). 
This phenomenon results from an elastic instability leading to three-dimensional flow, which is typically observed with 
Boger fluids in cone-plate and plate-plate flows, as investigated previously by Phan-Thien (1985) and McKinley et al 
(1991). The three-mode Oldroyd-B model is accurate enough to predict G’ and G” within the measured range. Data at 
low and high frequencies, leading to values of G’ close to the base line, were excluded. The spectrum will be useful 
later to help quantify the Deborah number and for future numerical simulations of this flow. 
 
3. Flow visualization results 
 
3.1. Newtonian fluids  
 

Flow visualizations were carried out first with Newtonian fluids to assess the effect of inertia and for comparison 
purposes with the results of the elastic Boger fluids. Fig. 3 shows stream-traces of the flow of the Newtonian fluid N91 
in the middle plane of the 3D sudden contraction and Fig. 4 plots the variation of the normalised vortex length with 
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Reynolds number, measured with both Newtonian fluids in the same plane. The Reynolds number is defined as 
Re1 = ρH1U1 η.  

As expected, inertia leads to a reduction of the corner vortex, especially for Reynolds numbers above 0.05. At low 
Reynolds numbers, inertial effects are negligible and xR H1  asymptotes to 0.326, where H1 represents the upstream 
duct half-width. Under creeping flow conditions, note that for a 4:1 circular contraction xR H1 → 0.326 also, while 
for a 4:1 planar contraction xR H1 → 0.375 (see Alves et al, 2003b). Even though, at first sight, the flow inside the 
vortex looks two-dimensional, in reality it is three-dimensional and, in contrast with the planar and axisymmetric 
sudden contraction flows, none of the recirculations are ever closed in the square contraction as seen by a closer 
inspection of the streaklines. 

For Newtonian fluids, all the experimental flow features are well captured by numerical simulations shown in the 
predicted variation of the vortex length with the Reynolds number in Fig. 4. These numerical simulations are shown in 
Alves (2004), and were obtained with a finite-volume code developed by the authors (Alves et al, 2003a).  
 

 
 

Figure 3- Streaklines for the flow of Newtonian fluids in the middle plane of a 4:1:1 sudden contraction. 
 

3.2. Boger fluids  
 

To quantify the strength of elastic effects with Boger fluids it is convenient to use a single relaxation time in the 
definition of the Deborah number, 
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In this equation λ p  is Oldroyd’s relaxation time, which is calculated from the linear viscoelastic spectrum using 

Eqs. (3 a,b). In this way, it is guaranteed that at low rates of deformation (low angular velocities), the viscoelastic 
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Hence, from data in Tab. (2), the parameters of the equivalent single mode Oldroyd-B model are the following: 
PAA100 — η0 ≡ ηs + ηp =  0.52 Pa.s, β ≡ ηs η0 =  0.769 and λ p =  1.947 s; PAA300 — η0 ≡ ηs + ηp =  0.74 Pa.s, 
β ≡ ηs η0 =  0.5 and λ p =  1.942 s. 
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Figure 4- Influence of the Reynolds number on the vortex length at the middle plane of a square-square 4:1:1 sudden 

contraction for Newtonian fluids N85 and N91. Comparison between experiments and numerical predictions. 
 
Streaklines at the middle plane of the contraction are presented in Fig. 5 for the flow of the PAA100 fluid for 

increasing values of the flow rate. The flow characteristics are complex, but with 1 0.11Re <  inertial effects are 
negligible and thus the complex behavior observed is mainly caused by elastic effects. At low values of the Deborah 
number ( De1= 0.041), viscous effects predominate and the flow pattern is similar to that seen in Fig. 3 for Newtonian 
fluids, with the separation pathline still concave in shape. With increasing Deborah number changes progressively 
occur: first, there is a very slight increase in vortex size while the separation pathline straightens, then the corner vortex 
progressively decreases in size to about a quarter at De1 ≅ 0.2 , an effect not due to inertia since the Reynolds number 
remains lower than 0.05. Note that for the 4:1 axisymmetric contraction, McKinley et al (1991) reported results bearing 
some resemblance: negligible elastic effects for De2< 1 and a decrease in the corner vortex up to De2= 3.4, based on 
downstream flow quantities (their, as in here De2 = 64De1). However, in contrast to McKinley et al, the formation of a 
strong lip vortex while the corner vortex decreases is not seen here, although the higher curvature of the streaklines at 
the reentrant corner suggests the possibility of a weak lip vortex there (see photo for De1=0.210). 

As the Deborah number further increases the corner vortex starts to grow, and simultaneously the mid-plane 
streamlines approaching the contraction plane progressively diverge with flow elasticity ( 1 0.376De ≥ ). This anomalous 
effect had already been predicted by Alves et al (2000) for the flow of a Boger fluid in a 4:1 plane sudden contraction 
(see their Figure 7 at De= 5) and was also observed by McKinley et al (1991) for the flow of Boger fluids in circular 
contractions. This streamline divergence upstream of the contraction for Boger fluids can be attributed to a local intense 
increase in extensional viscosity leading to an increased flow resistance just upstream of the contraction plane as the 
extension rates grow in a region of predominantly extensional flow characteristics. This extensional thickening is 
characteristic of Boger fluids, but there are not enough data to correlate rheological behavior with diverging flow. 
McKinley et al (1991) discusses this issue and mentions different diverging flow intensities for fluids with similar 
extensional viscosity behavior, and argues for the relevance of the total Hencky strain to this flow feature. Of note here, 
the diverging streamlines with Boger fluids were observed in the absence of noticeable lip vortex activity.  This 
contrasts with the visualizations of McKinley et al (1991) in the axisymmetric geometry, but agrees with their 
conclusions that diverging streamlines and lip vortex are unrelated. 

The growth of the large vortex continues with elasticity, and the flow remains steady up to Deborah numbers of the 
order of 0.8. As the Deborah number further increases the flow becomes periodic, possibly due to an elastic instability 
and this is observed in the crossings of some streaklines for De1 = 0.847 . The amplitude of the oscillations increase 
with De1 and this can be seen in the three snapshots of Fig. 6, taken at different moments within a cycle for one 
supercritical flow condition. At higher flow rates the flow eventually looses its periodicity. 

For the second Boger fluid, PAA300, the pathline flow visualizations are shown in Fig. 7. In general terms, the 
influence of elasticity is the same as for PAA100, but there are important differences worth mentioning. First, the 
increase of the middle-plane corner vortex at low Deborah numbers is also observed, but is now significantly more 
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intense than with PAA100, as can be properly assessed in the plot of xR H1  versus De1 in Fig. 8: xR H1  peaks by 
more than 25% relative to the Newtonian value at De1 ≈ 0.08. Then, xR H1  decreases to about 0.15 in the range 
De1 =0.1 to 0.2, but the other main difference relative to PAA100 is that now the middle-plane vortex has changed 
from a corner vortex to a lip vortex (see photo at 1 0.149De = ), which has similarities to that found numerically for 
Boger fluids in the 4.1 plane contraction by Alves et al (2000) (cf. their Figure 7 at De= 4 for UCM fluids). 

 

 
 

Figure 5- Influence of elasticity on the streakline flow patterns at the middle plane of a 4:1:1 sudden contraction for 
PAA 100. 
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Figure 6- Streaklines for the flow of PAA 100 in the middle plane of a square-square contraction at three different 
moments within one different oscillating supercritical flow condition ( 1 1.22De = ). 

 
It is known from experimental and numerical work in the 4:1 plane sudden contraction flow with Boger fluids 

(Nigen and Walters, 2002; Walters and Webster, 2003), that a lip vortex is formed at low to moderate Deborah 
numbers. This lip vortex grows with elasticity and eventually dominates the corner vortex that is so characteristic of 
low Deborah number flows. In contrast, for the axisymmetric sudden contraction flow of Boger fluids, often the corner 
vortex grows with elasticity without any lip vortex, but there are exceptions such as those reported by Boger et al 
(1986) and especially McKinley et al (1991) with PIB/PB solutions (polyisobutylene in polybutene). Although the 
square/square contraction has similarities to the axisymmetric geometry, because of the extensional strain rates and the 
possibility of partial balance of cross-stream pressure and stress gradients, the visualizations of Evans and Walters 
(1986) for a square/square 16:1:1 contraction do not show any lip vortex, but only enhancement of the middle-plane 
corner vortex, in deep contrast to our results for the PAA300 fluid (but in agreement with our results for PAA100).  

Vortex enhancement with elasticity occurs for De1 > 0.3, but now this refers to the lip vortex rather than the corner 
vortex found for the PAA 100, and is much stronger. As with the PAA100, there are diverging streaklines upstream of 
the contraction plane, but now in the presence of a lip vortex. The appearance of diverging streaklines in a 3D 
square/square contraction flow of Boger fluids, with and without lip vortex, is here documented for the first time and 
confirms the suggestion of McKinley et al (1991) that the two phenomena are unrelated. 

At even higher Deborah numbers, such as at De1 = 0.726 , the flow of PAA300 also becomes periodic as the flow 
of PAA100. This periodicity results from an elastic instability and occurs earlier than for the PAA100 solution, at 
De1 ≅ 0.7 .  

 
4. Conclusions 
 

Flow visualisations were carried out in the middle plane of a 4:1:1 sudden square/square contraction for Newtonian 
and Boger fluids under conditions of negligible inertia, using streakline photography. The Newtonian flow patterns 
were in good agreement with numerical results and showed inertia to be negligible for Reynolds numbers below 0.05. 
The flowfield was clearly three-dimensional with open recirculations, and inertia pushed the corner vortex towards the 
contraction plane, as expected. 

For the two Boger fluids the recirculations were seen to increase at low Deborah numbers, prior to an intense 
decrease leading to a minimum size at De1 ≈ 0.2. Then, as elasticity increased further, the streaklines on the central 
region of the approaching flow started to diverge while the vortices grew again with elasticity in a much stronger way, 
until the flow became periodic and eventually chaotic at very high flow rates. For the more concentrated Boger fluid 
(PAA300) these effects were stronger in magnitude due to its higher elasticity, but a major difference in flow features 
was seen: after the vortex got small at low Deborah numbers, a lip vortex appeared and grew with elasticity in contrast 
to the PAA100 solution, where only corner vortex enhancement was observed. This conflicting behaviour, and the 
existence of diverging flow upstream of the contraction, are here reported for the first time in the square/square 
contraction flow of Boger fluids. However, similar flow features have been reported in the past for the circular 
contraction, as is discussed. 
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Figure 7- Influence of elasticity on the streakline flow patterns at the middle plane of a 4:1:1 contraction for PAA300. 
 

 

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PAA100 (18.1ºC)

PAA100 (21.1 ºC)

PAA300 (17.5 ºC)

PAA300 (21.0 ºC)

1
/

Rx
H

Elastic
instability

1De  
Figure 8- Variation of normalized vortex length with flow elasticity for Boger fluids PAA100 and PAA300. 

 

    Re1 = 0.0032 – De1 = 0.022          Re1 = 0.0359 – De1 = 0.245 

 
 

    Re1 = 0.011 – De1 = 0.077               Re1 = 0.0607 – De1 = 0.414 

 

         Re1 = 0.0219 – De1 = 0.149            Re1 = 0.0607 – De1 = 0.726 

 
 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0217 
 
6. References 
 
Alves, M. A. 2004, “Escoamentos de fluidos viscoelásticos em regime laminar: análise numérica, teórica e 

experimental.”, PhD thesis, University of Porto, Portugal. 
Alves, M. A., Oliveira, P. J. and Pinho, F. T., 2003a, "Benchmark solutions for the flow of Oldroyd-B and PTT fluids in 

planar contractions", J. Non-Newt. Fluid Mech., vol. 110, pp. 45-75. 
Alves, M. A., Oliveira, P. J. and Pinho, F. T., 2003b, “Numerical simulation of viscoelastic contraction flows”, 

Proceedings of Second M. I. T. Conference on Computational Fluid and Solid Mechanics, Edited by KJ Bathe, 
Boston, 17-20 June 2003, USA, pp 826-829. 

Alves, M. A., Pinho, F. T. and Oliveira, P. J. 2000, “Effect of a high-resolution differencing scheme on finite-volume 
predictions of viscoelastic flows”, J. Non-Newt. Fluid Mech., vol. 93, pp. 287-314. 

Barnes, H. A. 2000, “A handbook of elementary rheology”, Institute of Non-Newtonian Fluid Mechanics, Aberystwyth, 
University of Wales. 

Boger, D.V., 1987, “Viscoelastic flows through contractions”, Annual Rev. Fluid Mech., vol. 19, pp. 157-182. 
Boger, D.V., Hur, D.U. and Binnington, R.J., 1986, “Further observations of elastic effects in tubular entry flows”, J. 

Non-Newt. Fluid Mech., vol. 20, pp. 31-49. 
Cable, P.J. and Boger, D.V., 1978a, “A compreensive experimental investigation of tubular entry flow of viscoelastic 

fluids: Part I. Vortex characteristics in stable flow. AIChEJ, vol. 24, pp. 868-879. 
Cable, P.J. and Boger, D.V., 1978b, “A compreensive experimental investigation of tubular entry flow of viscoelastic 

fluids: Part II. The velocity fields in stable flow. AIChEJ, vol. 24, pp. 992-999. 
Cable, P.J. and Boger, D.V., 1979, “A compreensive experimental investigation of tubular entry flow of viscoelastic 

fluids: Part III. Unstable flow. AIChEJ, vol. 25, pp. 152-159. 
Evans, R.E. and Walters, K., 1986, “Flow characteristics associated with abrupt changes in geometry in the case of 

highly elastic liquids” J. Non-Newt. Fluid Mech., vol. 20, pp 11-29. 
Evans, R.E. and Walters, K., 1988, “Further remarks on the lip-vortex mechanism of vortex enhancement in planar 

contraction flows” J. Non-Newt. Fluid Mech., vol. 32, pp. 95-105. 
Hassager, O., 1988, “Working group on numerical techniques. Fifth International Workshop on Numerical Methods in 

Non-Newtonian Flows, Lake Arrowhead, USA” J. Non-Newt. Fluid Mechanics, vol. 29, pp. 2-5. 
McKinley, G. H., Raiford, W. P., Brown, R. A. and Armstrong, R. C. 1991, “Non linear dynamics of viscoelastic flow 

in axisymmetric abrupt contractions”, J. Fluid Mechanics, vol. 223, pp 411-456. 
Nguyen, H. and Boger, D.V., 1979, “The kinematics and stability of die entry flows” J. Non-Newt. Fluid Mech., vol. 5, 

pp.353-368. 
Nigen, S. and Walters, K., 2002, "Viscoelastic contraction flows: comparison of axisymmetric and planar 

configurations" J. Non-Newt. Fluid Mech., vol. 102, pp. 343-359. 
Purnode, B. and Crochet, M. J. 1996, "Flows of polymer solutions through contractions. Part 1: flows of 

polyacrylamide solutions through planar contractions" J. Non-Newt. Fluid Mech., vol. 65, pp. 269-289. 
Quinzani, L. M., Armstrong, R.C. and Brown, R. A. 1994, “Birefringence and laser-Doppler velocimetry (LDV) studies 

of viscoelastic flow through a planar contraction” J. Non-Newt. Fluid Mech., vol. 52, pp. 1-36. 
Stokes, J. R. 1998, “Swirling flow of viscoelastic fluids”, PhD thesis, Department of Chemical Engineering, University 

of Melbourne, Australia. 
Walters, K. and Rawlinson, D.M., 1982, “On some contraction flows for Boger fluids”, Rheol. Acta, vol. 21, pp. 547-

552. 
Walters, K. and Webster, M.F., 1982, “On dominating elastico-viscous response in some complex flows”, Phil. Trans. 

R. Soc. London A, vol. 308, pp. 199-218. 
Walters, K. and  Webster, M. F., 2003, “The distinctive CFD challenges of computational rheology”, Int. J. Num. Meth. 

Fluids, vol. 43, pp. 577-596. 
White, S. A. and Baird, D. G. 1988, “Flow visualization and birefringence studies on planar entry flow behavior of 

polymer melts”, J. Non-Newtonian Fluid Mechanics, vol. 29, pp. 245-267. 
 

7. Copyright Notice 
 
The authors are the only responsible for the printed material included in this paper. 
 

 


