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Abstract. This paper present a numerical study of a One-equation turbulence model applied to incompressible
flows. The finite element method was used with the Characteristic-based split algorithm, this algorithm use equal
order pressure and velocity interpolation and two steps for the pressure coupling. The code implementation use
triangular non-structured meshes. The results are compared with other numerical and experimental data for
classical test cases like the backward-faced step and the lid-driven cavity.
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1. Introduction

The CBS algorithm, coupled with the finite element method, has been used to simulate different kinds of
flow regimes, compressible or incompressible (Zienkiewicz and Codina, 1995; O.C. Zienkiewicz and Vazques,
1995), laminar or turbulent (O. C. Zienkiewicz, 2000b; Massarotti, 1998). This methodology allows the use
of equal order interpolation for the pressure and velocity field, and the possibility to stabilize flows for higher
local Reynolds (or Peclet) numbers. The stabilization strategy is based in a splitting procedure which treats
the pressure term in Navier-Stokes equation as source term computed apart. The semi-implicit form of this
algorithm which is presented in this work has a limit time step that controls the stability.

The main idea behind the Characteristic-Based Split method is an operation split which treats the pressure
terms of Navier-Stokes equations as source terms. The solution procedure begins solving a transporte equation
for each momentum equation without the pressure term. This is reached using a Characteristic-Galerkin pro-
cedure (O.C. Zienkiewicz and Nakazawa, 1984; R. Lohner and Zienkiewicz, 1984). The omitted pressure term
is used after a pressure change is calculated. For a semi-implicit algorithm a time step restriction is mandatory,
in this case the transport problem is full explicit and a time limit based on the mesh size, velocity field and
viscosity is calculated.

The Spalart-Allmaras One-Equation turbulence model (Spalart and Allmaras, 1994) is implemented. This
model is based on a transport equation for the turbulent viscosity assembled using empiricism, arguments of
dimensional analysis and selective dependence on the molecular viscosity. The source term of the transport
equation is calculated using the vorticity and a destruction term based in the distance to the wall. The
freestream and wall boundary conditions for the turbulence viscosity are trivial and could be implemented
using the turbulent viscosity itself.

The Navier-Stokes solver implemented by the use the CBS algorithm is tested with classical laminar cases
like the lid-driven cavity and the backward facing step. These cases have been exhaustively explored in the last
few decades being perfect validation cases. For the turbulent code a backward faced step geometry is explored
and the results are compared with experimental data.

2. Governing Equations

Considering incompressible newtonian flows, the conservation of mass and momentum are expressed by the
classical Reynolds averaged equations given by Eq. (1) and Eq. (2).
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In those equations u; and p corresponds to the mean velocity and pressure fields, p and u corresponds to the
density and viscosity of the fluid and pu’ ' is the Reynolds stress tensor which is modelled by the Boussinesq
eddy viscosity assumptlon given by:

pu/ ! pk(sz] 2[LTSij (3)

where pr is the turbulent eddy viscosity, S;; is the mean rate-of strain tensor and k the kinetic energy of
turbulence, defined as:
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The main feature of the one equation eddy viscosity models is to propose an extra transport equation for vr.

The model used in the present work is proposed by (Spalart and Allmaras, 1994). In this model the formulation
is closed using the following equation for the modified eddy viscosity:
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In this equation o, cp1, cp2 and ¢, are constants, d is the closest distance from the wall, and f,, is a proximity
function computed as:
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The modified eddy viscosity is defined as
=1L (14)
In the present version of the model the deformation rate is measured by the norm of the vorticity tensor, i.

S = V0,0 (15)

with

% =5 (5 57 19
The values of the constants are taken as:

Cy1 = 0.1335,Cp2 = 0.622,0 = 2/3,C,,; = 7.1, (17)

Cup2=0.3,Cp3 =2.0,k =041 (18)
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3. Numerical Methods

The basis of CBS algorithm is the computation of multiple steps in an incremental integration. This approach
can assure the stability for the pressure and velocity discretization as well as for the local Reynolds number.
The analysis of this approach is explored in many articles (Zienkiewicz and Codina, 1995; O.C. Zienkiewicz and
Vazques, 1995) and in particular for CBS algorithm in (O. C. Zienkiewicz, 2000b or R. Codina and Zienkiewicz,
1998).

To solve the conservation equations (1), (2) and (6), the following steps are used:

1. given initial conditions (u!=0,1%)
2. Step 1: Solve velocity field with Characteristic-Galerkin procedure.
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3. Step 2: Solve pressure equation for At
2 n * 2,.n
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where 0.5 < 6; <1 for the semi-implicit form.

4. Step 3: Solve velocity correction
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5. Step 4: Solve Eddy viscosity transport equation to calculate the new turbulent viscosity.
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where (@ is the source term calculate using the old velocity and viscosity values:
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For all the equations given above the Galerkin spatial discretization is applicable without stability prob-
lems, the details concerning this spatial discretization can be found in any basic finite elements biography
(0. C. Zienkiewicz, 2000a; Hughes J.R., 1986). The Galerkin method application in the above equation leads
to following weak form for the equations (19; 20;21):
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where N, is the standard finite element shape function.
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Figure 1: Cavity Geometry and Boundary Conditions

The equations above are solved using a triangular unstructured mesh. The solution of the transport equation
in the first and the last steps are carried out explicitly using a lumped mass matrix (O. C. Zienkiewicz, 2000a)
for simplicity. The solution of the linear system of equation that appears in the pressure evaluation is achieved
using a conjugated gradients method.

4. Laminar Results

In this section two numerical examples are presented in order to validate the laminar code. The two studied
problems are classical benchmark cases that have been studied for years.

4.1. Lid-Driven Cavity Flow

This case is widely used in the validation of Navier-Stokes solvers. Figure (1) shows the geometry and
boundary conditions used. A node pressure restriction is also used in the middle of the bottom corner. The
main challenge concerning this problem is existence of the two singularities where the cavity walls met the
cavity lid. This type of corner singularities are very usual in real world problems. A mesh of 40 x 40 elements
with a geometric concentration factor is used in this example. Four conditions of flow are simulated with Re=
100, 200, 400 and 1000.

Figure (2) shows a good agreement between the results simulated and those obtained with more refined
grids (Akin, 1994; Ghia and K. N. Ghia, 1982). Concerning this problem as the Reynolds number increases the
vortex move away from the driving wall toward the geometric center of the cavity, while new small vortex are
formed at the corners. The velocity field is well developed and smooth in all the domain. The vortex behavior
is very similar to that observed in the cited bibliography reference. The results can be considered to be very
satisfactory.

4.2. Laminar Backward-Facing Step Problem

Many usual engineering applications have recirculation zones. To test and validate CFD codes over these
recirculation conditions the backward-facing step case has been used for years. Figure (3) shows the geometries
used. The boundary conditions adopted are an inlet parabolic u velocity profile together with a zero vertical
velocity v. Non-slip conditions are enforced on all solid walls. For the out-flow a Neumann condition is imposed
with a zero pressure restriction. Two different geometries are used:

e Geometry 1: H=1.5, h=1.0, L=22, ¢ 1=3
e Geometry 2: H=1.0, h=0.5, L=22, e 1=3
Altogether four cases are simulated with two Reynolds number Re=>50 and 150 being used for each geometry.

1. Geometry (1), Re=50, mesh with 2017 nodes and 3840 elements.
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Figure 2: Middle velocity profiles for the cavity
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Figure 3: Backward-facing step geometry.

2. Geometry (2), Re=>50, mesh with 2017 nodes and 3840 elements.
3. Geometry (1), Re=150, mesh with 2017 nodes and 3840 elements.
4. Geometry (2), Re=150, mesh with 2017 nodes and 3840 elements.

The Reynolds number is defined by:

|Umax| : (H B h) (27)

Re =

The results obtained show that the velocity is well developed over all the domain. The big recirculation zone
at the step bottom, that is the main characteristic of this problem, is also present. The predicted results agree
quite well with the results obtained for many researchers (Morgan et al., 1982). A comparison with some of
these results show a suitable agreement of the reattachment point and maximum and minimum velocity. Those

comparisons are shown in Tables (1; 2; 3; 4).
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Figure 4: Pressure field for laminar step, case 1.
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Figure 5: Streamlines for laminar step, case 1.
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Figure 6: Recirculation zone detail for laminar step, case 1.
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Table 1: u velocity ,d=1.6 (after the step)

Resultados Case i Case ii Case iii Case iv

Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max.
Present -0.05 | 0.91 | -0.04 | 0.71 | -0.07 | 0.97 | -0.10 0.90
Kueny-Binder -0.04 | 0.90 - - -0.07 | 097 | -0.09 | 0.92
Buffat et. al. -0.05 | 0.89 | -0.02 | 0.69 | -0.07 | 0.95 | -0.11 | 0.88
Dhatt-Hubert -0.05 | 0.86 | -0.05 | 0.74 | -0.06 | 0.96 | -0.10 | 0.91
Donea et. al. -0.06 | 091 | -0.06 | 0.73 | -0.08 | 0.97 | -0.10 | 0.90
Ecer et. al. -0.06 | 091 | -0.06 | 0.72 | -0.09 | 0.92 | -0.04 | 0.87
Glowinski et. al. | -0.04 | 0.91 | -0.03 | 0.71 | -0.07 | 0.96 | -0.10 | 0.90
Hecht -0.05 | 0.91 | -0.04 | 0.72 | -0.07 | 0.97 | -0.103 | 0.90

Table 2: u velocity ,d=4 (after the step)

Resultados Case i Case ii Case iii Case iv

Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max.
Present 0.00 | 0.78 | 0.00 | 0.52 | -0.05 | 0.91 | -0.045 | 0.72
Kueny-Binder 0.00 | 0.72 - - -0.05 | 093 | -0.016 | 0.71
Buffat et. al. 0.00 | 0.77 | 0.00 | 0.52 | -0.05 | 0.90 | -0.03 | 0.70
Dhatt-Hubert 0.00 | 0.78 | 0.00 | 0.52 | -0.03 | 0.91 | -0.04 | 0.72
Donea et. al. 0.00 | 0.78 | 0.00 | 0.53 | -0.06 | 0.91 | -0.06 | 0.72
Ecer et. al. 0.00 | 0.77 | 0.00 | 0.53 | -0.03 | 0.87 | -0.03 | 0.71
Glowinski et. al. | 0.00 | 0.77 | 0.00 | 0.52 | -0.05 | 0.91 | -0.05 | 0.72
Hecht 0.00 | 0.78 | 0.00 | 0.52 | -0.05 | 0.91 | -0.05 | 0.73

Table 3: u velocity ,d=8 (after the step)

Resultados Case i Case ii Case iii Case iv

Min. | Max. | Min. [ Max. | Min. [ Max. | Min. | Max.
Present 0.00 | 0.69 | 0.00 | 0.50 | 0.00 | 0.81 | 0.00 | 0.56
Kueny-Binder - - - - 0.00 | 0.82 | 0.00 | 0.56
Buffat et. al. 0.00 | 0.69 | 0.00 | 0.50 | 0.00 | 0.80 | 0.00 | 0.54
Dhatt-Hubert 0.00 | 0.69 | 0.00 | 0.50 | 0.00 | 0.81 | 0.00 | 0.56
Donea et. al. 0.00 | 0.69 | 0.00 | 0.50 | 0.00 | 0.82 | 0.00 | 0.55
Ecer et. al. 0.00 | 0.69 | 0.00 | 0.51 | 0.00 | 0.79 | 0.00 | 0.51
Glowinski et. al. | 0.00 | 0.69 | 0.00 | 0.50 | 0.00 | 0.80 | 0.00 | 0.56
Hecht 0.00 | 0.70 | 0.00 | 0.50 | 0.00 | 0.81 | 0.00 | 0.56

Table 4: Reattachment point after the step

| Resultsr | Case(i) | Case(ii) | Case(iii) | Case(iv) |
Present 3.0 2.1 6.8 4.9
Kueny-Binder 3.0 - 6.0 4.5
Buffat et. al. 2.5 1.0 5.8 4.5
Dhatt-Hubert 3.0 2.0 6.5 5.0
Donea et. al. 2.5 2.0 6.0 5.0
Ecer et. al. 3.0 2.8 5.9 4.7
Glowinski et. al. 2.5 1.8 4.8 4.4
Hecht 2.76 2.1 6.0 4.6
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5. Flow over a Turbulent Backward-facing step

This problem has served as a benchmark for experimental and numerical studies for years. The results
obtained are compared with (Kim, 1978) and other reference work for this case is (Ross and Larock, 1997).
The geometry utilized is the same used for the laminar case Fig. (3) with the follow dimensions:

e Geometry: H=3.0, h=1.0, L=20, ¢ =3

The boundary conditions adopted are an inlet full developed velocity and turbulence profile, these profile is
previously calculated using the same numerical code and a channel-flow. The inlet velocity profile used agrees
with (Wilcox, 1994). Non-slip conditions are enforced on all solid walls. For the out-flow a Neumann condition
is imposed with a zero pressure restriction. A Reynolds number of 47,000 is used in this case. The mesh utilized
has 3279 nodes and 6320 triangular elements Fig (7). The mesh is refined close to the step in the recirculation
zone.

Figure 7: Mesh used for the turbulent step case

The velocity and pressure fields found are well developed and smooth in all domain as shown in the Figures
(9; 10; 11). The erros and discontinuities in the velocity and pressure field are insignificant. The comparison of
the velocity profiles with experimental results (Kim, 1978) for four different positions along the step are shown
in Fig. (8). These positions are taken based in the step height and for this case 1.5,2,5.5,10.5. The characteristic
big recirculation zone is presente, and beneath this one a small recirculation also appears Fig. 11.
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Figure 9: Pressure field for turbulent step.

Figure 10: Streamlines for turbulent step.
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Figure 11: Recirculation zone detail for turbulent step.

6. Conclusions

The CBS code implemented has a very stable behavior. In all studied cases the convergence was reached
without considerable residual oscillation. An implementation advantage of this code perceived is the same
interpolation order for pressure and velocity. This is very significant as long as only one mesh has to be generated
and the velocity and pressure unknowns can be evaluated at the same mesh points. Other computacional
advantage concerning this algorithm is that the sparse system of equations is symmetric and positive definite
and can be solved using the very efficient conjugated gradients method.

The two classical laminar cases studied presented a reasonable agreement with the vast bibliography existent.
The cavity flow was solved for moderated high Reynolds numbers using not so fine mesh and the results obtained
coincide with the results using finite difference and more fine grids (Ghia and K. N. Ghia, 1982). The backward-
faced step case results are close to those obtained in the workshop (Morgan et al., 1982). The cavity and
backward-facing step flows are good challenger for numerical codes. Both flows examples were used in order to
validade the present numerical code.

The turbulent code show good results for its simplicity and easy implementation. The convergence was
reached easily and without any numerical oscillation. The computational time was very compatible with the
laminar case.
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