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Abstract 
An analysis is presented of the computational optimization of integral transform algorithms for the streamfunction only 
formulation of the Navier-Stokes equations, as applied to the steady incompressible laminar flow of a Newtonian fluid in two-
dimensional formulation. The classical lid-driven rectangular cavity flow problem is considered in order to revise the 
conventional development of the Generalized Integral Transform Technique (GITT). The GITT is applied transforming the partial 
differential equation into a system of coupled ordinary differential equations, which is numerically solved by a general algorithm 
for boundary value problems, using a subroutine from the IMSL library with automatic error control. The conventional algorithm 
written in FORTRAN language is modified and tested seeking its optimization. A few different strategies of applying the technique 
are considered to achieve improved computational performance and allowing the inspection of convergence rates in the 
eigenfunction expansion of the original potentials for high Reynolds numbers. These different algorithm alternatives are analyzed 
and the relative merits are discussed. Results for different values of the Reynolds number and cavity aspect ratios are presented in 
tabular and graphical forms and fully converged results are critically compared against previously published findings. 
 
 
 
1. Introduction 

 
Along the last few years, the classical discrete approaches for the approximate solution of partial differential 

equations have gained a significant impulse towards cost effectiveness and robustness, which allowed for the 
construction and dissemination of powerful multipurpose automatic solvers in CFD analysis, widely and 
commercially available nowadays. 

The continuous progress on computer technology, resulting in growing CPU processing speed associated to new 
architectures that maximize the use of the computational resources, has on the other hand led to a great deal of 
progress on numerical methods development, as for instance in relation with heat transfer and fluids mechanics 
applications, of particular interest within the present context.  Modern computational techniques such as 
parallelization and vectorization were then advanced and are already traditionally applied to purely numerical 
methods, contributing to increase their computational performance. 

Also within mainly the last two decades, the Generalized Integral Transform Technique (GITT), a hybrid 
numerical-analytical methodology for partial differential equations, has been gradually advancing into the solution of 
progressively more involved convection-diffusion problems, of both linear and nonlinear nature (Cotta, 1993; Cotta 
and Mikhailov, 1997; Cotta, 1998). Its analytical heritage allows the generation of fairly straightforward algorithms 
with automatic error control scheme for the desired potentials and always maintaining a moderate increase of the 
computational effort with the increase on the number of independent variables (Cotta, 1993; Cotta, 1998). Such 
characteristics make it an attractive alternative to the more conventional purely numerical methods, provided the 
resulting additional analytical involvement is presumably accommodated by the user. Despite the strong analytical 
component inherent to this class of methods, a number of algorithm and numerical analysis questions have been 
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posed along the years of its development, and further research is of interest in the computational optimization of 
integral transform solutions of different classes of partial differential problems. So, it is intended through this work, 
to investigate some of the computational aspects that influence the performance of the Integral Transform Method, as 
applied to the solution of steady fluid flow problems governed by the Navier-Stokes equations (Perez Guerrero, 
1991, Perez Guerrero & Cotta, 1992, Perez Guerrero, 1992).    

The chosen test-problem was the laminar driven flow in a rectangular cavity (Pan and Acrivos, 1967), due to the 
challenging nature of its formulation and the vast literature available on it in the realm of numerical analysis and 
comparative exercises. Seeking to minimize the CPU time spent to solve the model and for improving convergence, 
modifications on the parameterization scheme, on the vectorial arrangement of the equations and several other 
modifications in the structure of the algorithm are here proposed and critically analyzed.  As a by-product of the 
present effort, new sets of benchmark results for the lid-driven cavity flow problem are presented, as obtained 
through the GITT approach for different values of the governing parameters, Reynolds number and aspect ratio. 
   
  
2 Problem Formulation 
  
2.1 The Classical lid-driven rectangular cavity flow problem 
 

The fluid flow inside lid-driven cavities belongs to a special class of problems represented by patterns of closed 
streamlines. The classical square cavity problem, already discussed and solved by the GITT (Perez Guerrero, 1991, 
Perez Guerrero & Cotta, 1992, Perez Guerrero, 1992), is represented by an enclosure of square section completely 
filled by a Newtonian fluid and possessing a moving end wall, in general with uniform speed. The formulation for 
the original problem is then presented in terms of  the streamfunction as: 
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The homogeneous linear case ∇4ψ=0, known as Stokes problem, has several analytical solutions reported in the 

literature, as described in (Burgraff, 1966; Joseph and Sturges, 1978; Hellebrand, 1996). 
 
 
2.2 Variations of the Classical Problem 
 

Besides the classical problem, other formulations have been previously considered for benchmarking purposes, 
such as the Stokes problem in rectangular cavities with different dispositions of moving end walls. These models 
constitute useful approximations for many flows of interest in engineering practice. In  (Guigon, 2000), examples of 
low Reynolds numbers flows were analyzed for different boundary condition configurations.    

The first model to be presented involves a solid-wall rectangular cavity where the flow is driven by the motion 
of its horizontal bounding walls (Fig. 1).  The second model involves a rectangular cavity with a combination of 
upper free surface and the flow driven by a horizontal-moving lower wall (Fig. 2), possessing industrial application 
such as in the production of fine ceramic layers used in electronics (Gaskell, 1998). 

Such cases have thus been studied using the GITT for a wide range of Reynolds number and aspect ratio, 
considering variations of the flow patterns, as represented by the outlines in Fig.3 below. 
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Fig. 1   - Cavity with two horizontal-moving  end walls and  the associated boundary conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  -   "Ceramic Tape Caster” and associated boundary conditions. 
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Fig. 3 – Variations of the elliptical problem formulation - Stokes Problem -  ∇4Ψ=0 
 
 
Applying the GITT to the formulation given by equations (Eqs. 1-5) the partial differential problem is 

transformed into an infinite coupled ordinary differential equations system, (Pérez-Guerrero et al., 1992, Guigon, 
2000). The numerical solution for the transformed potentials is then achieved after truncation of the infinite system 
to a sufficiently large order N that reaches the prescribed accuracy target: 
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3 Computational Implementation  
 

The major numerical task in the application of the GITT is therefore the numerical solution of the associated 
ODE system for the transformed potentials, here represented by Eq.6 and related boundary conditions, for instance 
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obtained from the integral transformation of Eqs.3 and 5 for the classical problem. The BVPFD routine is one of the 
best-known and commonly used to solve ordinary differential systems associated with stiff boundary value problems, 
such as those that appear from application of the Integral Transform Method to elliptic partial differential equations. 
Applying this routine, following (Pérez-Guerrero et al., 1992; Shankar, 1993), Eq. 6 must be redefined as a first 
order system (Pereyra, 1978). For implementation of the different proposed models (Fig.3), it was only necessary to 
modify the specification of one of the subroutines used by BVPFD, responsible for the definition of the boundaries 
limits. For all other parts of the algorithm, it was therefore employed the same methodology as for the classical case. 
We now discuss some of the modifications performed on the basic algorithm and improvements achieved from the 
present study. 
 
3.1 The Fortran90 implementation 
 

The original code written in Fortran77 (Perez Guerrero et al., 1992) was reorganized, making use of the 
resources and structures automatically available in the Fortran90 compiler.  The resulting CPU time gain obtained 
through the modified code, rewritten in Fortran90 (Stephen, 1998), was markedly significant. As an example, we 
take the case of Re=1000, N=25 terms, and with a relative error control of 10-5, then the Fortran77 code was 77% 
slower than the correspondent Fortran90 implementation. This comparison has been produced using the automatic 
parameterization provided by the BVPFD routine, from the IMSL library. 
 
3.2 Strategies for the problem parametrization  
 

As typical of various numerical schemes for nonlinear ODE´s, when increasing the nonlinear characteristic of 
the problem, numerical results may be obtained through the solution for intermediate problems with the gradual 
increase of the governing parameter in the nonlinear terms, here the Reynolds number. Therefore, each obtained 
intermediate result serves as an initial estimate for the following problem along the iterative procedure and the 
Reynolds number works as a natural parametrization coefficient in the present equations system. This approach 
demands that the programmer specifies the control of iterations inside the algorithm, but one is required to know 
which variation interval of the Reynolds number will produce a more efficient processing.   

Another strategy is to use of the automatic parameterization process already provided by the BVPFD routine that 
consists in the solution of the following parametrized system: 

 
yiv = p. f(y, y', y'', y'''),    0 < p < 1                             (7) 
 

Using the built in parametrization scheme, the solution process starts using an easier problem (with the p value  
< 1 associated with the nonlinear term), reaching the original system formulation when p=1.  Some results are here 
compared obtained from the implemented algorithm using the natural parameterization (user chosen variations of the 
Reynolds number) and the automatic parameterization (BVPFD), as shown in Table 1. All the cases shown were 
executed for the model 3.a.  The parametrization was directly applied to the first 29 terms of the finite series in Eq. 6 
and for a desired final Reynolds number Re=1000. 
 
Table  1 – Comparison of CPU time units for different parametrization tests 
 

Natural 
Parametrization 

Reynolds Number Tol. Final Mesh CPU Time Units 

0.10 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 1.d-5 235 1.86 
0.20 0, 200, 400, 600, 800, 1000 1.d-5 257 1.32 
0.25 0, 250, 500, 750, 1000 1.d-5 265 1.32 
0.30 0, 300, 600, 900, 1000 1.d-5 245 1.84 
0.40 0, 400, 800, 1000 1.d-5 248 1.05 
0.45 0, 450, 900, 1000 1.d-5 252 2.35 
0.50 0, 500, 1000 1.d-5 271 1.18 

BVPFD 
Parametrization 

Reynolds Number Tol. Final Mesh CPU Time Units 

0.1 1000 1.d-5 268 1.00 
 

For the tests using the natural parameterization, the best relative result in terms of CPU time was obtained for the 
parameter value 0.4. The variation in the size of the converged final mesh for several values of the parameter is not 
observed to be significant. Using the parameterization from BVPFD, in spite of reaching a larger final mesh, the 
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resulting lower computational processing time demonstrates that this alternative was finally the most efficient among 
our various attempts. It is important to note that the automatic parameterization scheme of BVPFD is not, of course, 
always guaranteed to achieve convergence. For higher Reynolds numbers it might be necessary to appropriately 
experiment with different values of the parameter “p” in order to reach convergence. 

 
3.3  Reformulation of the arrays specification  
 

 Applications that use vector and matrix structures should be implemented exploring the best hardware 
characteristics of the computer, to enhance performance when processing their elements. Using Fortran codes, for 
example, the CPU time can be reduced eliminating the stride (spacing at the start of each block in the memory), 
measured by the Fortran compiler as the number of contiguous elements for each column. In one-dimensional arrays, 
it is desirable that the elements processed inside a loop be located the closest possible in the memory. For multi-
dimensional arrays (in Fortran), the best obtainable performance will occur when the variable of the most internal 
loop is related with the left array index.    

 
The transformation of Eq.6 to a first order system generates the following specification: 
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Figure 4 below shows the allocation for the vector elements employed to store data obtained during the 

processing for finite series of three terms (N=3), as specified in Eqs. 8: 
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Fig. 4 – Original memory allocation for values of the transformed potentials and derivatives with N=3. 
 

This memory allocation model presents two inconveniences, inherent to the solution methodology application. 
First, increasing the nonlinear characteristic of the problem, it becomes necessary to increase the number of terms in 
the eigenfunction expansion (Eq. 6), to enhance convergence and thus achieve more accurate results. For this 
purpose, calculations are organized with gradual increase of the truncation orders; in other words, the solution 
scheme is constructed so that it is possible to use the solution vector obtained for a certain number of terms as an 
approximation for the next calculation with a larger truncation order. It is therefore necessary to reallocate the spaces 
inside the vector, reusing the data located in the same position. Figure 5 below illustrates the space reallocated in the 
solution vector, when the number of terms in the series increases (from 3 to 4 in this example). This memory 
reallocation scheme has been commonly applied to the codes developed to date for elliptical problems using the 
Integral Transform Method. 
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Second, the access to the elements of the array inside a loop is not sequentially processed. In this conventional 
model, the larger the number of terms in the series, more distant will be the memory addresses accessed by the 
potentials and the various derivatives in the solution vector.     
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Fig. 5 – Redistribution of the solution vector elements for a truncation order increase to N=4. 

 
Therefore, a new array arrangement is proposed, which stores the transformed potentials and derivatives values 

as described below in Figure 6: 
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Fig. 6  -  The memory array allocation for the new  vectorial arrangement proposed  - N=3. 

 
Using this new model brings two advantages. First, the access to the several derivatives at each step of the loops 

is performed in closer or contiguous memory positions. Second, when the truncation order is increased the inclusion 
of new terms is only necessary at the end of the array, without reallocation of memory space in order to re-write the 
older elements.   

  Table 3 presents some comparative results for the original and optimized codes, under the memory reallocation 
scheme analysis. In agreement with our expectations, the new allocation of data in memory, in combination with the 
parameterization for the boundary conditions (Guigon, 2000), is the alternative that presents the best performance. 
With this information, the modified code was consolidated, making the program intrinsically more efficient with the 
increase of the truncation order and providing significant reduction on algorithm size as well. 
 
3.4 Convergence for high Reynolds number 

 
As expected from eigenfunction expansion type approaches, as the importance of source terms increase, there 

should be a slowing down on convergence rates of the original potentials series representation. There is a visible 
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reduction of the convergence rates with higher Reynolds numbers due to the stronger resulting nonlinear source 
terms. For such cases, a larger number of terms in the finite series representations are fairly expected, requiring a 
larger computational effort.   
Table 3 – Comparison of CPU time for optimized code as compared with the original algorithm–Tol= 10-5 - Re=1000 
 

Original Modified Intermediary 
Truncations 

Max. Trunc.  
Final Mesh CPU Time Unit Final Mesh CPU Time Unit 

5 25 211 0.002 211 0.001 

9 25 211 0.019 226 0.01 

15 25 226 0.092 226 0.07 

21 25 226 0.25 226 0.184 

23 25 226 0.34 226 0.26 

25 25 226 0.43 226 0.32 

 Total (in CPU time Units)  1.14 0.84 
Original:  Time(s)    =  0.35 25 terms (without intermediary truncation) 
Modified:    Time(s) = 0.28 

 
Table 4 shows a comparison of the algorithms used for a high value of the Reynolds number, Re=5000, when the 

larger computational effort can be verified. For the original code, the computational algorithm was developed 
according to the stride model shown in Figs.4, 5. In the modified version, it has been used the scheme depicted in 
Fig. 6 and Eq. 9, with reduction on the strides. As expected, the improvement in the CPU time becomes more evident 
while increasing the number of terms in the eigen-function expansions, here represented by a reduction of 50% on 
the total execution time obtained relative to the original algorithm version.   

In both cases, the programs were executed considering a relative error control of 10-3 for up to 37 terms in the 
expansion. In the final execution, for which 41 terms were used, the tolerance was decreased to 10-4. This justifies 
the significant increase of the size on the final mesh and the larger CPU time spent at the final execution of the 
algorithm.  
 
Table 4 – Comparison of original and modified algorithms for large Reynolds number situation (Case 3.a -  moving end  
wall - With and Without Stride - Initial Mesh=131pts.- Re=5000). 
 

Original Modified N 
Mesh CPU Time Units Mesh CPU Time Units 

5 240 0.004 240 0.004 

9 285 0.048 285 0.043 

13 297 0.29 297 0.21 

17 297 0.65 297 0.52 

21 399 1.73 399 1.26 

25 399 3.54 399 2.87 

29 399 5.15 399 4.29 

33 399 11.82 399 5.77 

37 399 13.56 399 8.11 

41 561 38.15 531 17.52 

 Total CPU Units 74.95 40.61 
 
 
4  Applications and reference results 
 

After accomplishing an optimized algorithm for Integral Transforms applied to elliptical problems, numerical 
results for the models specified in Fig. 3 are here reported, as well as the comparisons of such converged values with 
those obtained through other methods, according to (Gaskell et al., 1998).   The first analysis consists of the 
comparison among values of the stream-function obtained through analytical, numerical and hybrid (GITT) methods, 
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as applied to the Stokes problem solution approximation. These results complement the comparisons presented in 
(Gaskell et al., 1998). 

 The values presented in Table 5, obtained for the model 3.b, correspond to points inside the rectangular cavity, 
with two moving end walls, Ut=2 (superior wall), Ub=1 (inferior wall), aspect ratio=5, where the various solutions 
presented are:  Sh = Shankar method (Shankar, 1993); JS = Joseph and Sturges method (Joseph & Sturges, 1978); 
Numerical = Finite Elements (2592 elements, 5393 nodes). The last row in each case consolidates the reference 
results provided by the GITT approach after full convergence has been achieved for a five significant digits user 
prescribed accuracy control. The overall agreement is indeed very good, but closer between the GITT results and the 
more refined implemention of (Shankar, 1993), than with the purely numerical solution reported in (Gaskell et al., 
1998). Table 6 confirms the converged values obtained through GITT and reported as reference results in Table 5. 
 
Table 5 – Comparison of Stokes flow solutions, including the present GITT hybrid approach and analytical and numerical 
solutions reported in (Gaskell et al., 1998) (Cavity  Ω: [-1,1] x [0,10] – Aspect Ratio 5). 
 
X =          0.0        0.25        0.50       0.75 
Y = 7.5 
Sh (N=200,M=200)  -3.7974E-3 -3.0985E-3 -1.5392E-3 -2.8947E-4 
JS (N=200)  -3.7974E-3 -3.0985E-3 -1.5392E-3 -2.8947E-4 
Sh (N=20 ,M=20 )  -3.7970E-3 -3.0981E-3 -1.5390E-3 -2.8940E-4 
JS (N=20)   -3.7961E-3 -3.0973E-3 -1.5385E-3 -2.8925E-4 
Numerical   -3.8118E-3 -3.1130E-3 -1.5513E-3 -2.9807E-4 
GITT ( Converged)  -3.7965E-3 -3.0969E-3 -1.5387E-3 -2.9020E-4 
 
Y = 5.0 
Sh (N=200,M=200)  1.8652E-5  1.5741E-5  8.8501E-6  2.3507E-6 
JS (N=200)  1.8652E-5  1.5741E-5  8.8501E-6  2.3507E-6 
Sh (N=20 ,M=20 )  1.8651E-5  1.5740E-5  8.8496E-6             2.3505E-6 
JS (N=20)   1.8645E-5  1.5735E-5  8.8465E-6  2.3496E-6 
Numerical   1.8713E-5  1.5796E-5  8.8909E-6  2.3744E-6 
GITT (Converged)  1.8649E-5  1.5735E-5  8.8489E-6  2.3540E-6 
 
Y = 2.5 
Sh (N=200,M=200)  1.8985E-3  1.5491E-3  7.6952E-4  1.4471E-4 
JS (N=200)  1.8985E-3  1.5491E-3  7.6952E-4  1.4471E-4 
Sh (N=20 ,M=20 )  1.8983E-3  1.5489E-3  7.6941E-4            1.4471E-4 
JS (N=20)   1.8983E-3  1.5489E-3  7.6938E-4  1.4465E-4 
Numerical   1.9057E-3  1.5463E-3  7.7576E-4  1.4901E-4 
GITT (Converged)  1.8980E-3  1.5484E-3  7.6930E-4  1.4507E-4 
 
 
Table 6.  Convergence behavior of GITT solution for the case 3.b (N<25, Aspect Ratio=5, Stokes flow). 
 

N Y=7.5   X = 0.0 Y = 7.5    X = 0.25 Y = 7.5    X = 0.5 Y = 7.5    X = 0.75 
5 -.37898E-02     -.31035E-02    -.15324E-02    -.29716E-03 

10 -.37958E-02     -.30972E-02    -.15394E-02    -.28909E-03 
15 -.37966E-02     -.30970E-02    -.15388E-02    -.29028E-03 
20 -.37965E-02     -.30969E-02    -.15387E-02    -.29027E-03 
21 -.37965E-02     -.30969E-02    -.15387E-02    -.29024E-03 
24 -.37965E-02     -.30969E-02    -.15387E-02    -.29020E-03 
25 -.37965E-02     -.30969E-02    -.15387E-02    -.29020E-03 
N Y=5.0    X = 0.0 Y = 5.0   X = 0.25 Y = 5.0   X = 0.5 Y = 5.0   X = 0.75 
5 .18631E-04  .15754E-04  .88313E-05   .23732E-05    

10 .18647E-04  .15736E-04  .88508E-05   .23507E-05    
15 .18645E-04  .15736E-04  .88492E-05   .23541E-05    
20 .18649E-04  .15735E-04  .88488E-05   .23541E-05    
21 .18649E-04  .15735E-04  .88489E-05   .23540E-05    
24 .18649E-04  .15735E-04  .88489E-05   .23540E-05    
25 .18649E-04  .15735E-04  .88489E-05   .23540E-05    
N Y=2.5    X = 0.0 Y =  2.5   X = 0.25 Y = 2.5    X = 0.5 Y = 2.5    X = 0.75 
5 .18947E-02        .15516E-02        .76611E-03   .14855E-03 

10 .18977E-02        .15485E-02        .76960E-03   .14452E-03 
15 .18980E-02        .1548E-02        .76933E-03   .14511E-03 
20 .18980E-02        .15483E-02        .76930E-03   .14510E-03 
21 .18980E-02        .15483E-02        .76930E-03   .14508E-03 
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24 .18980E-02        .15483E-02        .76930E-03   .14507E-03 
25 .18980E-02        .15483E-02        .76930E-03   .14507E-03 

The second analysis corresponds to the comparison of values and flow patterns for several models applied to 
rectangular cavities, not only for the Stokes flow case but also extending the calculation to the nonlinear case, 
allowing for the comparison of the corresponding streamline patterns.  The variations in the flow behavior can be 
verified by changing the dimensionless parameters of the problem, while also changing the bondary conditions 
specification according to the previously discussed models. Figures 7 to 10 show the streamlines with flow patterns 
for different cavity models and different aspect ratio. Figs.7.a,b for instance show the classical case of the square 
cavity flow problem, respectively for Re=0 (Stokes flow) and Re=1000. Figs. 8.a,b then show the case of a 
rectangular cavity of aspect ratio 5, and again for the two values of Re=0 and 1000. The secondary recirculation 
zones are noticeably captured, where the potential gradients are fairly high and highly dependent on the Reynolds 
number and aspect ratio. Figs.9.a,b and 10.a,b bring the different situation of a cavity with two moving end walls, 
with a top lid velocity Ut=-2 and a bottom lid velocity of Ub=-1, which induce the appearance of entirely different 
secondary flow patterns, especially for the larger value of Re. 
 
 

 

 

 
Fig. 7.a – One moving end wall - Re=0  

Ut = -1 ; Aspect Ratio=1 
Fig. 7.b – One moving end wall - Re=1000  

Ut = -1 ; Aspect Ratio=1 
 

 

 
Fig. 8.a – One moving end wall - Re=0  

Ut = -1 ; Aspect Ratio=5 
Fig. 8.b – One moving end wall - Re=1000  

Ut = -1 ; Aspect Ratio= 5 
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Fig. 9.a - Two moving end walls- Re=0  

Ut=-2; Ub=-1 ; Aspect Ratio=1 
Fig. 9.b – Two moving end walls - Re=1000  

Ut=-2; Ub=-1 ;  Aspect Ratio=1 
 
 

 

 

 
Fig. 10.a - Two moving end walls - Re=0  

Ut=-2; Ub=-1 ; Aspect Ratio=5 
Fig. 10.b – Two moving end walls - Re=1000  

Ut=-2; Ub=-1 ;  Aspect Ratio=5 
 
 
5. Concluding Remarks 
 

This work proposes a computational optimization for integral transform algorithms applied to the Navier-Stokes 
equations in streamfunction-only formulation. Steady lid driven cavity flow was taken for the test-case problem, as a 
typical two-dimensional example of a nonlinear elliptical formulation. The optimization explored the features of the 
Fortran90 compiler, modifying several arrays structures previously used for the data representation, and thus 
significantly improving the algorithm and reducing CPU time.   The combined use of the best alternative of the 
parameterization provided by the IMSL routine BVPFD and the new memory allocation scheme for the data 
structures have also produced a significant reduction in computational cost for large values of the main parameter, 
the Reynolds number, recommending the modified approach use in the Integral Transform algorithms developed for 
elliptical problems. 

Finally, a few flow configurations were analyzed under proposed boundary conditions combinations, for 
different values of the governing parameters, Reynolds number and aspect ratio, allowing for the establishment of 
new reference results represented by the fully converged Integral Transform computations. 
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