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Abstract. A new high-resolution polynomial TVD/CBC-based upwind scheme is developed for numerical solution of

hyperbolic conservation laws and related fluid dynamic problems. The scheme, called TDPUS-C3, is implemented into

the CLAWPACK software. Unsteady simulation of nonlinear problems demonstrates that the scheme is capable of stably

reproducing shocks, discontinuities and complex structures in flows.
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1. INTRODUCTION

Modeling of the nonlinear convective terms in conservationequations of the fluid dynamics continues to be a challenge.

On the one hand, classical methodologies, such as first orderupwind (FOU) and centered difference (CD) schemes, are

prone to produce errors during the computational process. Numerical solutions computed with the FOU scheme present

smearing, compromising the accuracy; computations with CDschemes introduce spurious oscillations, leading to instabil-

ities. On the other hand, the sophisticated ENO and WENO schemes provide high accuracy and are free from oscillations,

but their computational costs are very high, specially on irregular meshes. An intermediate approach that satisfies theto-

tal variation diminishing (TVD) and convection boundedness criterion (CBC) stability criteria constitutes another useful

manner of approximating convective terms. In this article,a new high-resolution polynomial TVD/CBC-based upwind

scheme is developed for numerical solution of hyperbolic conservation laws and related fluid dynamic problems. The

scheme, called tenth degree polynomial upwind scheme (TDPUS-C3), is implemented into the CLAWPACK software for

solving these problems. Unsteady simulation of nonlinear equations demonstrates that TDPUS-C3 scheme is capable of

stably reproducing shocks, discontinuities and complex structures in flows.

2. MATHEMATICAL FRAMEWORK

In this section we present the fundamental concepts of upwind schemes based on TVD/CBC limited constraints.

2.1 The TVD/CBC criteria

As usual, we consider the 1D scalar advection equation to study the numerical discretization defined by Eq. (1) (further

extension for 2D/3D cases are straightforward),







ut + aux = 0, a = const.

u(x, 0) = u0(x), x ∈ R,
(1)

with analytical solution given byu(x) = u(x − at). The numerical approximation for Eq. (1) by using the conservative

finite difference methodology is

un+1
i = un

i − θ(un
i+1/2 − un

i−1/2), (2)
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whereun
i is the numerical solution at mesh point(iδx, nδt); δx andδt are the space and time increments, respectively.

θ = aδt/δx is the Courant-Friedrichs-Lewy (CFL) number.un
i+1/2 andun

i−1/2 are the numerical flux functions, which

depend on the following three selected points:Downstream,Upstream andRemote-upstream (see Fig.1). These locations

are previously defined according to the convection velocitiesVf andVg at the facesi + 1/2 andi − 1/2 (upwinding).

The general variableu is transformed into a new variables called normalized variable (NV) of Leonard(1988) by û() =
u() − u(R)

u(D) − u(R)
. Following Leonard’s formulation, the interface valueûf depends on̂uU only, sinceûD = 1 andûR = 0.

δx

2

δx

2

δx

U = iR = i− 1 D = i+ 1

ug P uf

Vg Vf

Figure 1. Sketch of upwind-biased stencil at pointP

Therefore it is possible to derive a nonlinear monotonic NV scheme by imposing the following conditions for0 ≤ ûU ≤ 1:

ûf (0) = 0 (a necessary condition),̂uf (1) = 1 (a necessary condition),̂uf (0.5) = 0.75 (a necessary and sufficient

condition to reach second order of accuracy) andû
′

f (0.5) = 0.75 (a necessary and sufficient condition to reach third order

of accuracy). Leonard (1988) also recommends that for values of ûU < 0 or ûU > 1, the scheme must be extended

using FOU scheme, then̂uf = ûU . Schemes define in NV can be rewritten in flux limiter form by using the relationship

ûf = ûU + 1
2Ψ(r)(1 − ûU ), whereΨ(r) is the flux limiter function andr is the ratio of successive gradients (a sensor),

given by rf = 1
1−φ̂U

(Waterson and Deconinck, 2007). The aim idea of the flux limiter is to control the process of

generation of over/undershoots by preventing gradients toexceed certain limits, or to change sign between adjacent points

(Hirsch, 2007). For stability reasons we ensure limited solution implementing the CBC criterion ofGaskell and Lau

(1988), as follows:φ̂U ≤ φ̂f (φ̂U ) ≤ 1, if φ̂U ∈ [0, 1]; φ̂f = φ̂f (φ̂U ) = φ̂U , if φ̂U /∈ [0, 1]; φ̂f (0) = 0 andφ̂f (1) = 1.

The TVD criterion constraint ofHarten(1983) ensures that, in general, spurious oscillations (unphysical noises) are

removed from the numerical solution. Formally, we considera sequence of discrete approximationsu(t) = u(t)i∈Z
for

a scalar quantity. The total variation (TV ) at timet of this sequence is defined byTV (u(t)) =
∑

i∈Z

|ui+1(t) − ui(t)|, a

scheme satisfies the TVD condition if, for all data setun, it is truth thatTV (un+1) ≤ TV (un), ∀n. The schemes that

satisfy TVD criterion guarantee convergence, monotonicity and high accuracy.

3. THE NEW UPWIND SCHEME TDPUS-C3

We present a new high resolution polynomial upwind scheme byusing the Leonard’s formulation above defined,

based on TVD/CBC conditions called tenth degree polynomialupwind scheme (TDPUS-C3), defined byûf (ûU ) =
∑10

i=0 αiû
i
U . This new upwind scheme is developed satisfying the second and third order of accuracy conditions from

Leonard, plus the following conditions:̂u′
f(0.5) = 0.75 to reach third order of accuracy;û′

f (0) = 1 andû′
f(1) = 1 to

avoid convergence problem in coarse grids (Lin and Chieng, 1991); û′′
f(1) = 0 andû′′′

f (0) = 0 to impose smoothness

on the solutions (Zijlema, 1996); û′′′
f (0) = 0 andû′′′

f (1) = 0 these conditions are impose for the authors to reach that

curvature varies slowly (a few abrupt changes). With these conditions and fixing a constant, e.g.α4, we find the others

coefficients:α = [0, 1, 0, 0, 320− 8β, 26β − 1664, 3456− 44, 41β − 3584, 1856− 20β, 4β − 384]T . After solving a

benchmark test problem, the advection equation withZalesak(1987) initial conditions, we find that the ideal parameter is

β = 567.25. The new upwind scheme in not normalized variables (for easycomputational implementation) is defined by
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uf =







uR+(uD − uR)∗ (̂uU + û4
U (α4+ûU(α5+ûU (α6+ûU(α7+ûU(α8+ûU(α9+ûUα10))))))), ûU ∈ [0, 1];

ûU , ûU /∈ [0, 1],

(3)

4. NUMERICAL RESULTS
In this section, we numerically study the results obtained by using TDPUS-C3 with the aim of evaluating his perfor-

mance, e.g. second order of accuracy and absence of spuriousoscillations at discontinuities and sharp gradients.

Scalar equation: the new high-resolution upwind scheme is studied solving the nonlinear inviscid Burgers equa-

tion 1D defined by Eq. (4) for evaluating the ability for capturing the wave before (t ≈ 0.33) and after (t ≈ 1.5) the

shock; the shock is developed att ≈ 2/π. The numerical solutions are computed withN = 80 andθ = 0.5 on a

domain[−1, 1] . Periodic boundary conditions are implemented. The “exact” solution is computed using the algorithm

of Teng(2010). We implement for this problem a TVD Runge-Kutta scheme of third order (RK3) for time integration

(Gottlieb and Chi-Wang-Shu, 1998). The initial conditions isu(x, 0) = 1 + 1
2 + sin(πx). The solutions obtained with

TDPUS-C3 are compared with two well known schemes from litearure: SUPERBEE byRoe(1986) and Van Albada by

van Albadaet al. (1982)

ut +

(

u2

2

)

x

= 0, (4)

It is clearly seen from Fig.2 that TDPUS-C3 models well the wave before and after the shock. These solutions are in
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Figure 2. 1D Burgers equation. Before (t =≈ 0.33) and after (t ≈ 1.5) the shock.CFL = 0.5, N = 80.

good agreement with the “exact” ones.

The Buckley-Leverett equation:we test TDPUS-C3 scheme for the nonlinear nonconvex Buckley-Leverett problem

defined by

ut +

(

4u2

4u2 + (1− u)2

)

= 0. (5)

The numerical solutions are computed att = 0.4 with N = 400 andθ = 0.4 on a domainx ∈ [−1, 1]. Periodic

boundary conditions are implemented. The “exact” solutionis a shock rarefaction-contact discontinuity mixture and is

computed by using van Leer scheme (van Leer, 1974) with N = 2000 computational cells. RK3 at time is implemented.

The initial conditions areu(x, 0) = 1 if −0.5 ≤ x ≤ 0 and0, otherwise. In Fig.3, the numerical solutions free of

oscillations obtained with TDPUS-C3 are well comparable with the “exact” ones. It can be seen from this figure that,

in particular, TDPUS-C3 is more accurate than other schemes, while SUPERBEE and van Albada schemes shown to be

more dissipative before the shock and the contact discontinuity.
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Figure 3. The Buckley-Leverett equation.CFL = 0.4, N = 200 andt = 0.4.

It is important comment that some high-resolution schemes fail to converge to the correct entropy solutions for this

problem (Qiu and Shu, 2002).

System of equations. (Euler equations):we solve the nonlinear systems of Euler equations in an accuracy test for

the 2D Euler equations. The Euler equations are defined by












ρ

ρu

ρv

E













t

+













ρu

ρu2 + p

ρuv

u(E + p)













x

+













ρv

ρuv

ρv2 + p

v(E + p)













y

= 0, (6)

whereρ is the density,u andv are the component of the velocity vectors.p is the pressure andE = p/(γ−1)+ 1
2ρ(u

2+v2)

is the total energy.γ is a constant, the ratio of specific heat.

Accuracy test: the TDPUS-C3 scheme is evaluated in an accuracy test by usingEq. (6) with initial conditions

(ρ, u, v, p)T = (1 + 0.2 sin(π(x + y)), 0.7, 0.3, 1) at final timet = 2 on a domain[0, 1] × [0, 1]. θ = 0.475 and

γ = 1.4. The exact solution isρ(x, y, t) = 1 + 0.2 sin(π(x + y − (u + v)t)). Periodic boundary conditions are im-

plemented. In Tab.1 we show theL1 errors and numerical orders of convergencep (LeVeque, 2007) on four meshes:

20×20, 40×40, 80×80, 160×160and320×320. For comparisons, we compute the numerical errors and orders of con-

vergence for this problem by using SUPERBEE scheme ofRoe(1986). We can see from Tab.1 that TDPUS-C3 achieves

the designed order of convergence. In the first mesh sizes theorder of convergence computed with TDPUS-C3 are slightly

superior that those produced by SUPERBEE scheme but slightly inferior to those ones produced by van Albada scheme.

Table 1.L1 errors of the densityρ for the 2D Euler equations att = 2 andθ = 0.475.

Mesh
TDPUS-C3 SUPERBEE VAN ALBADA
L1 p L1 p L1 p

20× 20 9.03E − 03 — 8.311E − 03 — 9.034E − 03 —
40× 40 2.13E − 03 2.08 2.074E − 03 2.00 2.157E − 03 2.07
80× 80 5.17E − 04 2.04 5.173E − 04 2.00 5.203E − 04 2.05

160× 160 1.27E − 04 2.02 1.283E − 04 2.01 1.277E − 04 2.03
320× 320 3.16E − 05 2.01 3.176E − 05 2.01 3.158E − 05 2.02

The shock-entropy wave problem: The Shu-Osher shock’s tube is a 1D moving Mach 3 shock with sine waves
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interacting with a turbulent fieldShu and Osher(1989) and defined by Eq. (6). with initial condition given by







ρ = 3.857143; u = 2.629369; p = 10.33333, x < 0.4;

ρ = 1 + 0.2 sin(5x); u = 0; p = 1, x ≥ 0.4.
(7)

The computational domain is defined on−5 ≤ x ≤ 5. The boundary conditions are inflow/outflow. The CFL number is

θ = 0.5. γ = 1.4. We present a spatial evolution with meshes size125, 250, 500 and1000 of the numerical solutions for

densityρ computed by TDPUS-C3 at finalt = 1.8 . The reference solution is computed with SUPERBEE (Roe, 1986)

with N = 2000 mesh points. In Fig.4 are depicted the numerical solutions for densityρ computed with TDPUS-C3. We
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Figure 4. Spatial evolution for densityρ for Shu-Osher problem computed with TDPUS-C3N = 500, θ = 0.5, t = 1.8.

zoom-in on the more complicated regions of the problem, the entropy wave (EW) region, and show that for finest grids

the numerical solutions computed with TDPUS-C3 is more approximated to the reference solutions.

Double Mach reflection (DMR): This problem was originally studied byWoodward and Colella(1984) and it is

given by Eq. (6) defined in a rectangular region[0, 4]× [0, 1] where, initially, a shock moves diagonally with a Mach10

forming an angle ofα = π
3 with thex−axis. The initial conditions are

(ρ, u, v, p) =







(8, 8.25 · cos π
6 ,−8.25 · sin π

6 , 116.5), x < x0 +
y√
3
;

(1.4, 0, 0, 1.0), x ≥ x0 +
y√
3
,

(8)

wherex0 = 1
6 . The boundary conditions are as follows. At the left,x = 0 (the inflow boundary), it is imposed post-shock

values (Eq. (8)); at the right (the outflow boundary) the imposed conditions at the bottom,y = 0, are reflecting boundary

conditions on[x0, 4] and exact post-shock conditions otherwise. The exact position of the shockwave at timet and at

y = 1 is given bys(t) = x0 +
(1 + 20t)√

3
. We set the pre- and post-shock conditions aty = 1, before and after of

shockwave position at instantt

(ρ, u, v, p) =







(8, 8.25 cos π
6 ,−8.25 sin π

6 , 116.5), 0 < x < s(t);

(1.4, 0, 0, 1.0), s(t) ≤ x ≤ 4.
(9)

Fig. 5 depicted the numerical solutions of densityρ for the DMR problem on a domain[0, 3]× [0, 1]. In Fig. 6 it is seen

how the TDPUS-C3 models this shock problem describing the small viscosities at the “blown-up” region approximately

on the interval[2, 3]× [0, 0.5]. We can see from this figure that TDPUS-C3 combined with a first order in time Godunov

scheme captures some vortical structures like those ones obtained with WENO5- 5th order in space and 3rd order in time

These results are in agreement with numerical results foundin literature (seeWoodward and Colella(1984)).
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Figure 5.Density contours for double Mach reflection problem at timet = 0.2, computed with TDPUS-C3 on a mesh1600 × 400.
30 contour lines fromρ = 1.5 to ρ = 22.97. (x, y) ∈ [0, 3]× [0, 1].
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Figure 6. “Blown up” region for densityρ computed with TDPUS-C3 on a mesh1600 × 400 and WENO5 of
(Jiang and Shu, 1996) on a mesh3840 × 960 at time t = 0.2. 30 contour lines fromρ = 1.5 to ρ = 22.97 and

CFL = 0.6.
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5. CONCLUSIONS

A new upwind biased scheme, based on TVD and CBC stability criteria called TDPUS-C3, has been presented. The

performance of the scheme was assessed by solving 1D/2D complex hyperbolic conservation laws involving shocks and

sharp gradients. An accuracy test has shown that the scheme can achieve (at a minimum) second order of accuracy. In

summary, the TDPUS-C3 upwind scheme can be considered as an innovate and useful tool for modeling convective terms

of the general conservation equations. For the future, the authors are planning to apply the TDPUS-C3 upwind scheme to

complex incompressible turbulent free surface flows.
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