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Abstract. A new high-resolution polynomial TVD/CBC-based upwindesad is developed for numerical solution of
hyperbolic conservation laws and related fluid dynamic feats. The scheme, called TDPUS-C3, is implemented into
the CLAWPACK software. Unsteady simulation of nonlineabfgms demonstrates that the scheme is capable of stably
reproducing shocks, discontinuities and complex strgstim flows.
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1. INTRODUCTION

Modeling of the nonlinear convective terms in conservagiquations of the fluid dynamics continues to be a challenge.
On the one hand, classical methodologies, such as first apyend (FOU) and centered difference (CD) schemes, are
prone to produce errors during the computational proceasad\ical solutions computed with the FOU scheme present
smearing, compromising the accuracy; computations witls€tizmes introduce spurious oscillations, leading tolnilsta
ities. On the other hand, the sophisticated ENO and WENOnseh@rovide high accuracy and are free from oscillations,
but their computational costs are very high, specially oggiular meshes. An intermediate approach that satisfigdsthe
tal variation diminishing (TVD) and convection boundednesterion (CBC) stability criteria constitutes anotheetul
manner of approximating convective terms. In this artieleiew high-resolution polynomial TVD/CBC-based upwind
scheme is developed for numerical solution of hyperbolitseovation laws and related fluid dynamic problems. The
scheme, called tenth degree polynomial upwind scheme (T®€8)), is implemented into the CLAWPACK software for
solving these problems. Unsteady simulation of nonlingaiaéions demonstrates that TDPUS-C3 scheme is capable of
stably reproducing shocks, discontinuities and complexcgires in flows.

2. MATHEMATICAL FRAMEWORK
In this section we present the fundamental concepts of upathemes based on TVD/CBC limited constraints.

2.1 The TVD/CBC criteria

As usual, we consider the 1D scalar advection equation ¢ty she numerical discretization defined by E. further
extension for 2D/3D cases are straightforward),

uy +au, =0, a = const.
1)
U($,0)ZUO(IE>, ‘TE]R,

with analytical solution given by.(z) = u(x — at). The numerical approximation for Edl)(by using the conservative
finite difference methodology is

up ™t = = 0(uy gy — Uiy ) “
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whereu!" is the numerical solution at mesh poiéz, ndt); 6= anddt are the space and time increments, respectively.
0 = adt/dx is the Courant-Friedrichs-Lewy (CFL) numbe.a’;}ﬂ/2 andu;11/2 are the numerical flux functions, which
depend on the following three selected poimswnstream{pstream anéRemote-upstream (see Fit). These locations
are previously defined according to the convection velegitiy andVj, at the faces + 1/2 and: — 1/2 (upwinding).
The general variable is transformed into a new variables called normalized weigNV) of Leonard(198§ by i) =
U~ U(R)

. Following Leonard’s formulation, the interface valtig depends ori;; only, sinceip = 1 andar = 0.
YD) — WR)
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Figure 1. Sketch of upwind-biased stencil at pdint

Therefore itis possible to derive a nonlinear monotonic MNesne by imposing the following conditions for< uy < 1:
4r(0) = 0 (a necessary condition},;(1) = 1 (a necessary conditioni;(0.5) = 0.75 (a necessary and sufficient
condition to reach second order of accuracy) ﬁifﬁd).{)) = 0.75 (a necessary and sufficient condition to reach third order
of accuracy). Leonard (1988) also recommends that for gatdi¢i;; < 0 or uy > 1, the scheme must be extended
using FOU scheme, thery = 4. Schemes define in NV can be rewritten in flux limiter form bingsthe relationship

iy =y + 39 (r)(1 — dy), whereW(r) is the flux limiter function and- is the ratio of successive gradients (a sensor),
given byry = 1_1% (Waterson and Deconinc007. The aim idea of the flux limiter is to control the process of
generation of over/undershoots by preventing gradierggdeed certain limits, or to change sign between adjaceéntypo
(Hirsch, 2007. For stability reasons we ensure limited solution implatitegy the CBC criterion ofGaskell and Lau
(1988, as follows: o < d¢(dv) < 1,if ¢u € [0,1]; 65 = ¢5(dv) = du, if v ¢ [0,1]; ¢7(0) = 0 andgs(1) = 1.
The TVD criterion constraint oHarten (1983 ensures that, in general, spurious oscillations (unglaysioises) are
removed from the numerical solution. Formally, we cons@eequence of discrete approximatiarig) = u(t), ., for

a scalar quantity. The total variatio'{’) at timet of this sequence is defined BW (u(t)) = > |ui+1(t) — ui(t)], @
€7

scheme satisfies the TVD condition if, for all data g8t it is truth that7'V (u"*!) < TV (u"), Vn. The schemes that
satisfy TVD criterion guarantee convergence, monotoyanitd high accuracy.

3. THE NEW UPWIND SCHEME TDPUS-C3

We present a new high resolution polynomial upwind schemedigg the Leonard’s formulation above defined,
based on TVD/CBC conditions called tenth degree polynomnpatind scheme (TDPUS-C3), defined by (uy) =
Z}io a;a};. This new upwind scheme is developed satisfying the secoddtérd order of accuracy conditions from
Leonard, plus the following conditions:, (0.5) = 0.75 to reach third order of accuracyy (0) = 1 andd’(1) = 1 to
avoid convergence problem in coarse gritli@nd Chieng1999; ;(1) = 0 anday’(0) = 0 to impose smoothness
on the solutionsZijlema, 1996; 4/'(0) = 0 anda’'(1) = 0 these conditions are impose for the authors to reach that
curvature varies slowly (a few abrupt changes). With thes®litions and fixing a constant, e.g,, we find the others
coefficients:a = [0, 1,0, 0,320 — 83,2653 — 1664, 3456 — 44,413 — 3584, 1856 — 203,43 — 384]T. After solving a
benchmark test problem, the advection equation @#lesak(1987) initial conditions, we find that the ideal parameter is
8 = 567.25. The new upwind scheme in not normalized variables (for easyputational implementation) is defined by
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UR+(UD — UR)*(ﬂU + ﬁ?‘](a4+ﬁU(a5+ﬂU(a6+ﬂU(a7+ﬂU(ag+ﬁU(a9+ﬁUa10))))))), uy € [0, 1];
iy, ay ¢ 10,1],
3)

Uy =

4. NUMERICAL RESULTS
In this section, we numerically study the results obtaingdising TDPUS-C3 with the aim of evaluating his perfor-

mance, e.g. second order of accuracy and absence of spasicillations at discontinuities and sharp gradients.

Scalar equation: the new high-resolution upwind scheme is studied solvirggrtbnlinear inviscid Burgers equa-
tion 1D defined by Eq.4) for evaluating the ability for capturing the wave befotex{ 0.33) and after { ~ 1.5) the
shock; the shock is developediats 2/7. The numerical solutions are computed with = 80 andf = 0.5 on a
domain[—1, 1] . Periodic boundary conditions are implemented. The “éalution is computed using the algorithm
of Teng(2010. We implement for this problem a TVD Runge-Kutta schemehafitorder (RK3) for time integration
(Gottlieb and Chi-Wang-Shi998. The initial conditions isu(x,0) = 1 + 1 + sin(rz). The solutions obtained with
TDPUS-C3 are compared with two well known schemes fromiitea SUPERBEE byRoe (1986 and Van Albada by
van Albadeet al. (1982

It is clearly seen from Fig2 that TDPUS-C3 models well the wave before and after the shdbkse solutions are in

0--©0 TDPUS-C3 o--© TDPUS-C3
@8 SUPERBEE @8 SUPERBEE
9++¢ van Albada 9++¢ van Albada
— Exact — Exact

Figure 2. 1D Burgers equation. Beforre=£~ 0.33) and after { ~ 1.5) the shockCF'L = 0.5, N = 80.

good agreement with the “exact” ones.
The Buckley-Leverett equation: we test TDPUS-C3 scheme for the nonlinear nonconvex Budkéserett problem
defined by

4 2
ut + (4u2+ (ul u)2) =0. ©)

The numerical solutions are computedtat= 0.4 with N = 400 andf = 0.4 on a domainz € [—1,1]. Periodic
boundary conditions are implemented. The “exact” solutfoa shock rarefaction-contact discontinuity mixture asd i
computed by using van Leer schemvarf Leer 1974 with N = 2000 computational cells. RK3 at time is implemented.
The initial conditions are:(x,0) = 1 if —0.5 < = < 0 and0, otherwise. In Fig.3, the numerical solutions free of
oscillations obtained with TDPUS-C3 are well comparablthviine “exact” ones. It can be seen from this figure that,
in particular, TDPUS-C3 is more accurate than other schemwigite SUPERBEE and van Albada schemes shown to be
more dissipative before the shock and the contact disagityin
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Figure 3. The Buckley-Leverett equatiofi F'L = 0.4, N = 200 andt = 0.4.

It is important comment that some high-resolution scheragsd converge to the correct entropy solutions for this
problem Qiu and Shu2002.

System of equations. (Euler equations)we solve the nonlinear systems of Euler equations in an acguest for
the 2D Euler equations. The Euler equations are defined by

P pu pv
U u? + uUv
Sl I IR I —0, )
pv puv pv° +p
E), \uE+p)), \vlE+p)),

wherep is the densityy andv are the component of the velocity vectopss the pressure antl = p/(y—1)+ 3 p(u®+v?)
is the total energyy is a constant, the ratio of specific heat.

Accuracy test: the TDPUS-C3 scheme is evaluated in an accuracy test by &jngs) with initial conditions
(p,u,v,p)T = (1 + 0.2sin(r(z + y)),0.7,0.3,1) at final timet = 2 on a domain[0,1] x [0,1]. # = 0.475 and
~v = 1.4. The exact solution ig(z,y,t) = 1 + 0.2sin(w(z + y — (u + v)t)). Periodic boundary conditions are im-
plemented. In Talh.we show thel; errors and numerical orders of convergepageVeque 2007 on four meshes:
20 x 20, 40 x 40, 80 x 80, 160 x 160 and320 x 320. For comparisons, we compute the numerical errors and®odeon-
vergence for this problem by using SUPERBEE schenfRax(1986. We can see from Tabthat TDPUS-C3 achieves
the designed order of convergence. In the first mesh sizesdee of convergence computed with TDPUS-C3 are slightly
superior that those produced by SUPERBEE scheme but sligificrior to those ones produced by van Albada scheme.

Table 1.1, errors of the density for the 2D Euler equations at= 2 andf = 0.475.

TDPUS-C3 SUPERBEE VAN ALBADA
Mesh
L, p Ly P Ly P
20x 20 9.03F—-03 — 8311FK—-03 — 9.034FE—-03 —

40 x 40 2.13E —03 2.08 2.074E —03 2.00 2.157F —03 2.07
80 x 80 b5.17TE —04 2.04 5.173E —04 2.00 5.203F — 04 2.05
160 x 160 1.27E —04 2.02 1.283E —04 2.01 1.277E —04 2.03
320 x 320 3.16E — 05 2.01 3.176E — 05 2.01 3.158E — 05 2.02

The shock-entropy wave problem: The Shu-Osher shock’s tube is a 1D moving Mach 3 shock wite siaves
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interacting with a turbulent fiel&hu and Oshg{1989 and defined by Eq#§]. with initial condition given by

p = 3.857143; u = 2.629369; p = 10.33333, z < 0.4;
p =1+0.2sin(5z); u=0; p=1, x> 0.4.

()

The computational domain is defined e < = < 5. The boundary conditions are inflow/outflow. The CFL numiger i
0 = 0.5. v = 1.4. We present a spatial evolution with meshes & 250, 500 and1000 of the numerical solutions for
densityp computed by TDPUS-C3 at final= 1.8 . The reference solution is computed with SUPERBRE& 1986
with N = 2000 mesh points. In Fig. are depicted the numerical solutions for dengigomputed with TDPUS-C3. We

Ul
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Figure 4. Spatial evolution for densityfor Shu-Osher problem computed with TDPUS-83= 500,60 = 0.5,t = 1.8.

zoom-in on the more complicated regions of the problem, ttipy wave (EW) region, and show that for finest grids
the numerical solutions computed with TDPUS-C3 is more exiprated to the reference solutions.

Double Mach reflection (DMR): This problem was originally studied Byfoodward and Colell§1984 and it is
given by Eq. ) defined in a rectangular regid, 4] x [0, 1] where, initially, a shock moves diagonally with a Maltth
forming an angle ofv = % with thez—axis. The initial conditions are

(8,8.25-cos §,—8.25-sin §,116.5), = <z + %;

(pvuavap) = (8)

Y
(1.4,0,0,1.0), v > w0+ 4,

wherez, = % The boundary conditions are as follows. At the left= 0 (the inflow boundary), it is imposed post-shock
values (Eqg. 8)); at the right (the outflow boundary) the imposed condgiahthe bottomy = 0, are reflecting boundary
conditions on[zy, 4] and exact post-shock conditions otherwise. The exactipogif the shockwave at timeand at

y = lis given bys(t) = xo + L\/;()t) We set the pre- and post-shock conditiong at 1, before and after of

shockwave position at instant

(8,8.25cos §, —8.25sin 5, 116.5), 0 <z < s(t);
(1.4,0,0,1.0), s(t) <z < 4.

(pvuavap) = )

Fig. 5 depicted the numerical solutions of densitfor the DMR problem on a domaid, 3] x [0, 1]. In Fig. 6 it is seen
how the TDPUS-C3 models this shock problem describing thedlsriscosities at the “blown-up” region approximately
on the interval2, 3] x [0, 0.5]. We can see from this figure that TDPUS-Gmbined with a first order in time Godunov
scheme captures some vortical structures like those oriametd with WENO5- 5th order in space and 3rd order in time
These results are in agreement with numerical results foulit@rature (se&Voodward and Colell§1989).
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TDPUS-C3

0.5

Figure 5. Density contours for double Mach reflection problem at time 0.2, computed with TDPUS-C3 on a me$B00 x 400.
30 contour lines fromp = 1.5 to p = 22.97. (z,y) € [0, 3] x [0, 1].

TDPUS-G WENO5

0.3

0.2 .

Figure 6. “Blown up” region for densityp computed with TDPUS-C3 on a medit00 x 400 and WENO5 of
(Jiang and Shu1996 on a mesh3840 x 960 at timet¢ = 0.2. 30 contour lines fronp = 1.5 to p = 22.97 and
CFL =0.6.
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5. CONCLUSIONS

A new upwind biased scheme, based on TVD and CBC stabilitgr@icalled TDPUS-C3, has been presented. The
performance of the scheme was assessed by solving 1D/2Dieoimyperbolic conservation laws involving shocks and
sharp gradients. An accuracy test has shown that the scheamachieve (at a minimum) second order of accuracy. In
summary, the TDPUS-C3 upwind scheme can be considered as@rate and useful tool for modeling convective terms
of the general conservation equations. For the future, tligas are planning to apply the TDPUS-C3 upwind scheme to
complex incompressible turbulent free surface flows.
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