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Abstract. The Classical Integral Transform Technique (CITT) is applied as solution methodology in the analysis of 
thermally developing flow of a non-Newtonian power-law fluid in circular tubes subjected to either prescribed wall 
temperature or prescribed wall heat flux. The effect of viscous dissipation is also considers to evaluate its influence in 
the temperature field. Results for the temperature field, as well as quantities of practical interest such as Nusselt 
numbers are computed for different power-law indices, which are tabulated and graphically presented as functions of 
the dimensionless coordinates. Critical comparisons with previous results in the literature are also performed, in order 
to verify the numerical codes developed in the present work and to demonstrate the consistency of the final results. 
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1. INTRODUCTION 
 

The effect of viscous dissipation is very important because is highly affects heat transfer processes whenever the 
fluid used has a low thermal conductivity and a high viscosity, as well as for fluid flow in small cross sectional ducts, 
and a small wall heat flux. Furthermore, the effect of viscous heating increases with an increase in the mass flow rate, 
consequently, this effect becomes more important under forced convection heat transfer. One important consequence of 
the effect of viscous dissipation is in the evaluation of the local Nusselt number (Dehkordi and Memari, 2010). In the 
context of analytical solutions in terms of eigenfunction expansions, the Classical Integral Transform Technique (CITT) 
appears as a reliable path for obtaining benchmark results, allowing for a more definitive critical evaluation of 
previously published numerical results of classical test problems. 

The effect of viscous dissipation in thermally developing laminar flow have been investigated by Giudice et al. 
(2007) and Aydin (2005), in this latter are considered two different thermal boundary conditions: the constant heat flux 
and the constant wall temperature. The viscous dissipation was also considered by Jambal et al. (2005), Dehkordi and 
Memari (2010) and by Dehkordi and Mohammadi (2009) where were also investigated the effects of the power-law 
index on the local Nusselt number. 

In this context, the present study applies the CITT in the analytical solution of the energy equation for non-
Newtonian power-law fluids taking into account the effect of viscous dissipation in circular ducts which are maintained 
at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high 
accuracy in developing thermal region. Comparisons with previous work in the literature are also made in order to 
validate the numerical code developed here and to demonstrate the consistency of results produced. 
 
2. MATHEMATICAL FORMULATION 
 

In the analysis, we consider thermally developing flow of an incompressible non-Newtonian fluid that follows the 
power-law model. The circular duct is maintained at a prescribed wall temperature Tw, or at a prescribed wall heat flux 
qw. The fluid enters the channels with a constant uniform temperature T0. The energy equation in the form 
dimensionless including the viscous dissipation effect can be represented by: 
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Subjected to the following boundary conditions: 
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where, 
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Where in the boundary conditions (3) and (4), the coefficient a identifies whether the duct wall is subjected to a 

prescribed temperature or to a prescribed heat flux, in the following form: 

 

0  ,  for prescribed wall temperature;
1  ,  for prescribed wall heat flux.

a ⎧
= ⎨
⎩

 

 
The dimensionless groups employed in the above equations are defined as: 

 

*

w

rr
r

= ;   

2 *2

RePr

z
rwz

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= ;   

*

0

z
z
vv
u

= ;   ( )
( )

* *
0

0

1 w

w ww
K

T T T TT a a q RT T
+

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− −
= −

−
;   

2
02

Re
n n
wu r

m
ρ −

= ;   1 1
0

Pr n n
w

m
u r αρ − −=

 

2
RePr o wu r

α
= ;   

( )

1
0

1 ''
01 ( )  

n

n n
w w w w

muBr
a r T T k a r q

+

−=
− − +

 (7) 

 
2.1. SOLUTION METHODOLOGY 

 
To improve the computational performance is convenient define a filter that reproduces the fully developed flow 

solution in order to homogenize Eq. (1). Therefore, the simple filter adopted is written as: 
 

( , ) ( ) ( ) ( , )   av p hT r z aT z T r T r z= + +  (8) 
 
The average temperature is defined as: 
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And for the case of a prescribed wall heat flux the average temperature is given in the form: 
 

3 1( ) 2 1
n

av
nT z z Br
n

⎡ ⎤+⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (10) 

 
Now, introducing the Eq. (9) into Eq. (1), the following problems for the potentials Tp(r) and Th(r,z) are obtained: 
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And for prescribed wall heat flux the following additional boundary condition is considered: 
 
1

0
( ) ( ) 0pw r T r dr =∫  (14) 

 
The solution for the particular problem Tp(r), for prescribed wall temperature and prescribed wall heat flux, is given, 

respectively, by: 
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The homogeneous problem is obtained as: 
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The PDE defined above by Eq. (17) can be solved by the CITT approach. Then, following the procedures of this 

technique, the appropriate eigenvalue problem needed for its solution are given by: 
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The eigenfunctions of this eigenvalue problem enjoy the following orthogonality property: 
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The normalization integral Ni is then computed from: 
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To complete the solution, it is necessary to evaluate the eigenvalues, the eigenfunctions and the normalization 

integrals. Here, for instance, we have used the Sign-Count Method established in the works of Mikhailov and 
Vulchanov (1983) and Mikhailov and Özisik (1984) to determine the eigenvalues and other related eigenquantities 
necessary to compute the temperature field. 

The eigenvalue problem defined by Eq. (21) allows for the definition of the following integral transform pair: 
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We can now accomplish the integral transformation of the original partial differential equation given by Eq. (1). For 

this purpose, Eq. (1) is multiplied by [r ( )riψ% ] and integrated over the domain [0,1] in r and the inverse formula given 
by Eq. (28) is employed. After the appropriate manipulations, for the case of a prescribed wall temperature, one obtains: 
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And, for prescribed wall heat flux: 
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According to the definition given by Eq. (11), the average temperature for the case of prescribed wall temperature is 

obtained as: 
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The local Nusselt number for both situations is defined as: 
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Resulting the following expressions for the case of a prescribed wall temperature and for a prescribed wall heat flux, 

respectively: 
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where, for prescribed wall temperature: 
 

i iih f g= −  (36) 
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and, for prescribed wall heat flux: 
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3. RESULTS AND DISCUSSIONS 

 
From Fig. (1), it is observed that in the absence of viscous dissipation, the solution is independent of whether there 

is wall heating or cooling. However, viscous dissipation always contributes to internal heating of the fluid; hence the 
solutions will differ according to the process taking place. As is well known, the Brinkman number accounts for the 
relevance of viscous dissipation. Fluid heating or cooling results in positive or negative values of Br, respectively. The 
thermal boundary condition considered for the tube wall was that of constant wall temperature. 

Two different thermal boundary conditions have been considered for the pipe wall: constant wall temperature and 
constant heat flux. For each boundary condition, both wall heating and wall cooling cases are examined. 

Also, the heat transfer results are illustrated in terms of conventional Nusselt numbers (Nu) against the 
dimensionless axial coordinate (X*) in the thermally developing region for Newtonian (n = 1), pseudoplastic (n = 0.5) 
and dilatant (n = 1.5) fluids with the Brinkman number as parameters. 

 
 
 

(a)

        

(b)
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(c)

 
Figure 1. Effect of Brinkman number on Nusselt number for the constant wall temperature (a) n = 0.5: pseudoplastic 

fluid; (b) n = 1: Newtonian fluid; and (c) n = 1.5: dilatant fluid. 
 
 
For the constant wall temperature case, Fig. 1, a relevant feature is that when viscous dissipation is considered  

(Br ≠ 0) the asymptotic Nu is independent of Br. 
As can be seen, in the case of Br > 0 the fluid is being cooled (inlet temperature is higher than the wall temperature). 

A minimum value of Nusselt number appears at some axial distance from which Nu makes a jump to its final value, 
because of the heat generated due to the viscous dissipation, which increases the temperature difference between the 
fluid and the wall and thus heat transfer. Before the jump, Nu values in the entrance region overlap with the values of 
Br = 0. 

In the case of Br < 0 means fluid is being heated (inlet temperature is lower than the wall temperature). There exists 
a singular point for all curves where the Nu goes to the infinity in the thermally developing region. This is the point 
where the average temperature of the fluid becomes equal to the wall temperature. From this point, fluid starts to heat 
the wall. The fluid temperature continues to develop thermally and finally reaches the same fully developed Nu as in the 
case of Br > 0. 

For the constant wall heat flux case, in Figs. 2a, 3a and 4a is possible to infer that, for small values of Brinkman 
number, the Nusselt number decreases monotonically from a maximum at the tube entrance to the fully developed value 
which is dependent upon the Brinkman number unlike the constant temperature boundary condition where the Nusselt 
number passed through a minimum to reach its fully developed value which is independent of the Brinkman number. In 
this case the heat generated by viscous dissipation and the wall heat flux are permanently present so that the fully 
developed Nusselt number is expected to be affected by both of them. 

In Figs. 2b, 3b, 4b and 4c Nu decreases to a critical point at which the internally generated heat due to viscous 
dissipation balances the heat supplied by wall. After this critical point the heat generated internally suppresses the heat 
supplied by wall. 
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(a)

        

(b)

 
Figure 2. Effect of Brinkman number on Nusselt number for the constant wall heat flux (n = 0.5: pseudoplastic fluid). 

 
 
 
 

(a)

        

(b)

 
Figure 3. Effect of Brinkman number on Nusselt number for the constant wall heat flux (n = 1: Newtonian fluid). 

 

(a)

        

(b)
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(c)

 
 
Figure 4. Effect of Brinkman number on Nusselt number for the constant wall heat flux ( n = 1.5: dilatant fluid). 

 
 
 
 

The numerical values of the asymptotic Nusselt numbers are given in the Tab. (1) for Br = 0 and Br ≠ 0. 
 
 
 

Table 1. Asymptotic Nusselt numbers with different power-law indices, Brinkman numbers and dimensionless axial 
coordinate 

Br 

Nu(z) 
Constant Wall Temperature Constant Wall Heat Flux 

n = 0.5 n = 1.0 n = 1.5 n = 0.5 n = 1.0 n = 1.5 
X*= 10-5 

0.1 52.6389 48.9822 47.6577 -10.5630 -7.6233 -4.6819 
0.01 52,5991 48.9204 47.5552 217.8390 498.5790 -172.507 
0.001 52,5951 48.9142 47.5449 68.8866 65.2572 66.7462 
0.0 52.5947 48.9135 47.5438 64.0225 59.5104 57.8338 
-0.001 52.5942 48.9129 47.5427 59.8000 54.6938 51.0212 
-0.01 52.5902 48.9067 47.5324 37.5256 31.6437 24.7655 
-0.1 52.5504 48.8449 47.4299 7.9422 6.0685 4.0295 

 
 

Table 1. Continued. 

Br 

Nu(z) 
Constant Wall Temperature Constant Wall Heat Flux 

n = 0.5 n = 1.0 n = 1.5 n = 0.5 n = 1.0 n = 1.5 
X*= 10-3 

0.1 11.0213 10.4058 10.3184 -90.9185 -29.0970 -10.4623 
0.01 10.8643 10.1578 9.9049 15.2005 14.6318 15.5637 
0.001 10.8485 10.1330 9.8634 13.6117 12.7202 12.4633 
0.0 10.8468 10.1302 9.8588 13.4554 12.5382 12.1934 
-0.001 10.8450 10.1274 9.8542 13.3027 12.3613 11.9350 
-0.01 10.8293 10.1026 9.8126 12.0698 10.9687 10.0230 
-0.1 10.8648 9.8532 9.3951 6.2642 5.1578 3.8520 
 X*= 1 
0.1 11.6666 9.5999 8.9047 4.1899 3.5821 3.0763 
0.01 11.6664 9.5997 8.9046 4.6836 4.2705 4.0638 
0.001 11.6644 9.5974 8.9028 7.7395 4.3541 4.1986 
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0.0 3.9494 3.6568 3.5392 4.7457 4.3636 4.2141 
-0.001 11.6689 9.6026 8.9067 4.7521 4.3732 4.2297 
-0.01 11.6669 9.6003 8.9049 4.8096 4.4609 4.3759 
-0.1 11.6667 9.6003 8.9048 5.4715 5.5814 6.6874 

 
 
 
4. CONCLUSIONS 
 

Thermally developing flow in a circular tube has been studied taking into account the effect of viscous dissipation. 
The numerical results are given graphically in terms of the Nusselt number for Newtonian and power-law non-
Newtonian fluids showing the effect of the Brinkman number. The wall thermal boundary conditions were considered 
as: constant wall temperature and constant wall heat flux. The Brinkman number is shown to play a significant role on 
the developing Nusselt number. 
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