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Abstract. The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries. However, due to 
practical limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances less than 
1000 m, mainly because of a high power consumption per transported unit mass. More specifically, to avoid the formation of dense 
structures such as dunes and plugs, which, depending on the characteristics of the material and on the availability of a pressure 
head from the carrier phase may cause a violent pressure surge or a possible line blockage, the system is preferably operated at 
homogeneous dispersed flow. To sustain such a flow regime high velocities are needed and, accounting for the resulting higher 
pressure drops, higher power consumption is demanded. An optimized pneumatic conveying system can be conceived with the help 
of adaptive control techniques. In the context described above, lower transport velocities are allowed if the formation of aggregates 
that precedes the transition to dense phase flow regimes are automatically detected and destroyed, thus, artificially stabilizing the 
light phase homogeneous flow regime. This work assesses the reduction in the necessary power that the application of such adaptive 
control technique could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying system used to transport 
Setaria Italica seeds. The instrumentation used to identify the flow regime is constituted of several pressure sensors installed along 
the transport line. The proposed control strategy is based on processing these signals through a neural network model to assess the 
flow condition and to mimic an optimized gain scheduled PID algorithm. Preliminary results show that reductions in power 
consumption can reach 50% when compared with classical non controlled transport.  
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1. Introduction  
 

The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries, mainly 
because of its flexibility, security in the transport of high valued products, ease of automation/control and low 
maintenance costs. The range of material that can be pneumatically transported is extensive: powders and rocks of up to 
50 mm in size to finished manufactured parts such as electronic components for instance. However, due to practical 
limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances less 
than 1000 m and average particulate size less than 100 mm. Among these limitations probably the most important one 
refers to a high power consumption per transported unit mass. More specifically, to avoid the formation of dense 
structures such as dunes and plugs, which, depending on the characteristics of the material and on the availability of a 
pressure head from the carrier phase may cause a violent pressure surge or a possible line blockage, the system is 
preferably operated at homogeneous dispersed flow. To sustain such a flow regime high velocities are needed (15 to 20 
m/s for instance) and, accounting for the resulting higher pressure drops, higher power consumption is demanded. 
Another important problem associated with the increase in the transport velocity is the abrasion of the equipment and 
degradation of the transported particulate. 

From a phenomenological point of view, pneumatic transport can be seen as a special application of gas-solid flows 
which can be described with the help of the so called state diagram, i.e. the curves of specific pressure drop in function 
of the gas superficial velocity. It is also possible to define a state diagram by plotting mass flow ratios in terms of the 
Froude number, which is a more general and convenient representation of the phenomenon. Either way, gas-solid flow 
state diagrams indicate that the transition from dispersed (or light) type flows to dense phase flows is associated to a 
minimum in the specific pressure drop, which would be an ideal operating condition if the above mentioned problems 
could be avoided.  

More specifically, the problem of operating the transport line near transition velocities lies on the hysteretic 
behavior of the transition. This can be better understood through a test on a horizontal line where the velocity of the 
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carrier phase is slowly varied between zero and a maximum value, above which the flow regime is dispersed and does 
not change. The different stages of this experiment are indicated in Fig. (1), where the flowing particles velocity Up is 
plotted against the gas  velocity Ug. In stage (a) Ug is not sufficiently high to levitate the particles so Up = 0 until a 
critical value is reached (Ug = U1). After this, in stage (b), Ug > U1, the particles are entrained by the gas flow and fully 
dispersed regime is asymptotically reached (Up → Ug). From a maximum gas velocity value, Ug is decreased in stage 
(c) of the experiment and different flow regimes may appear, such as stratified flow, intermittent flow and dune flow, 
until another critical value Ug = U2 is reached. At this point particles are no longer sustained in the core, some of them 
will segregate and stop and others will roll and bounce over the fixed particle layer at Up = U3. Operating the transport 
line near the light-dense transition means setting Ug to lay between U1 and U2 and handling a strong hysteretic behavior 
of Up as well as of the pressure drop and other relevant macroscopic parameters. Therefore, the safe operation within 
these conditions requires special control strategies, which is one of the main objectives of this work. 

 
 

 
Figure 1. Schematic representation of the different flow regimes in horizontal gas-solid flow when varying the carrier 

velocity. 
 

This work assesses the reduction in the necessary power that the application of such adaptive control technique 
could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying system used to transport 
Setaria Italica seeds (bird seed). The proposed control strategy is based on a neural network model responsible for both 
assessing the flow condition and for reproducing an optimized gain scheduled PID algorithm. Preliminary results show 
that reductions in power consumption can reach 50% when compared with classical non controlled pneumatic  
transport. 

 
2. Neural network models 

 
From a functional point of view a neural network model can be defined as a large number of simple interconnected 

processing units used to establish an input/output relation, and for which most of the stored information is associated to 
the strength of the interconnections. A typical processing unit, or neuron as it is called in the jargon, produces a scalar 
output by applying an activation function to a biased weighted sum of its inputs. In other terms, if yi and xi,j represents 
respectively the output and the inputs of the i-th neuron, fi( ⋅ ) its activation function, wi,j the corresponding weighting 
coefficients and bi a bias coefficient, the input/output relation is given by 

 
y = f ( w x + b )ji i i,j i,j i∑

                                                                                                                                          (1) 
 

A typical feed-forward multi-layer network is then formed by interconnecting several neurons and, consequently, 
defining a formal relation between an input vector { pi } and an output vector { qi }, as depicted in Fig. (2). 

One of the most important features of a neural network model is its ability to store input/output patterns, the so-
called associative memory, and to produces similar outputs from similar input patterns, the projection property. This can 
be done by properly adjusting the weighting coefficients according to a given learning heuristics, such as the supervised 
back-propagation method adopted in this work. In more precise terms, consider a learning data set of input/output pairs 
( { pi }n , { qi }n ) , where n = 1,2...N. and also weighting coefficients { wi,j }k, in which the subscript k will stands for 
the adjustment cycle (or epochs as it is called). During the adjustment process, the application of the inputs { pi }n  will 
produce outputs { ri, }n,k progressively closer to { qi }n , i.e. the desired ones. The process can be formulated as an 
optimization problem with a penalty function defined as 
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This is clearly a continuous differentiable function of the weights { wi,j }k and, thus, a classical gradient descent 

method can be applied to determine the set { wi,j }∞ which minimizes Eq. (2). This is the essence of the back-
propagation method, although there are crucial details regarding the choice of the activation functions and the strategy 
of updating { wi,j }k. A detailed discussion of this can be found in Hertz et al. (1991). The performance of a neural 
network is profoundly affected by its internal architecture (the number of hidden layers and the number of neurons in 
each one) and the type of interconnections (feed-forward, recursive, winner-take-all, etc.). Despite this, there is no 
general mathematical theory but rather a number of empiric rules to be considered when constructing such models 
(Crivelaro et al., 2002).  

 

 
Figure 2. Schematic representation of a feed-forward neural network with 3 layers    (input, hidden and output ) and 

generating 3 output values { qi } from 7 input values { pi }. The number of neurons at the input and output 
layers is generally taken to be equal to the number of input and output values respectively. 

 
Regarding the problem of controlling gas-solid flow regimes, somewhat analogous to the problem of recognizing 

characters from a scanned text for which there is a well established knowledge base, a modular architecture presents 
advantages over a fully interconnected model (see for instance Cao et al., 1996, or Gader et al., 1996). In particular, 
empirical estimations indicate that the learning time on a conventional single processor computer depends 
approximately on N3 (the total number of interconnections to the third). Thus, the decomposition of the global network 
into independent modules facilitates the rapid and efficient adjustment of the weighting coefficients. It is thus 
convenient to adopt  a model based on two independent neural networks, the first one responsible for assessing the flow 
regime by defining proper target and gain values for the controller, the second one dedicated to the calculus of the flow 
rate corrections in order to have optimal flow conditions. This architecture is depicted in figure 3, in which mg, ms, ∆mg 
and ∆ms stands for the gas and solids flow rates and their corrections respectively, Pi (i = 1,2,... M) denotes the static 
pressure measured along the transport line, d is the target value and KP, KI and KD are the proportional, integral and 
derivative gains. Before entering in further details on how these variables are processed, it is convenient to present the 
proposed control strategy. 

 
   

 
 

Figure 3. Controller internal architecture defined in terms of two independent neural network models. 
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3. Gain scheduled control strategy for pneumatic transport 
 
The automatic change in the parameterization of a process controller is known as gain scheduling. Discretely 

scheduled PID algorithms and linear controllers with a statistical approach to schedule its internal parameters 
correspond to different realizations of the same concept. Generally, scheduled control algorithms are used as non-linear 
compensation for processes with known non-linearities when auxiliary measurements are available that correlate well 
with the system dynamics (Doyle et al., 1998). As it was discussed above, this is exactly the case in pneumatic transport 
when operating near the light-dense flow transition and should be thus adopted in this work. Alternative strategies, 
mostly based on nonlinear control, although its recent advances, often lead to controllers of very complex structures 
(Knoop and Perez, 1994) and often lacking the necessary robustness to be applied in an industrial process (Doyle, 
1989). 

In view of this, the successful use of a scheduled gain control strategy in a solids pneumatic conveyor requires 
additional process variables to assess the non-linearities of the system dynamics, i.e. the dynamics of the flow regime 
transition and, also, the possibility to adjust optimum non-scheduled PID controllers which are specific for different 
flow regimes. The first condition can be straightforwardly fulfilled through the state diagram of the transport system, 
which justifies the choice of the input variables as shown in figure 3 (gas and solids mass flow rates and static pressure 
along the transport line). The fulfillment of the second condition was the object of a previous research work (Schiavon, 
2000), in which optimal PID controllers were tuned, i.e. optimum KP, KI and KD values were determined, around 
specific operating states of a 45 mm internal diameter 3 m long pneumatic transporter, using 0.8 mm average diameter 
sand particles (an analogous situation to the one treated in this work). 

Consider then, the generic state diagram shown in Fig. (4), which is very similar to the one  constructed for the test 
loop used in this work and described in details in the following section. The dotted line (T) indicates the frontier 
between dense and light phase flow regimes. The continuous inclined lines represent the constant solids mass flow rate 
lines plotted according to the corresponding mass flow ratio µ, defined as 
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and to the Froude number Fr defined as 
 

gU
Fr =

D g
                                                                                                                                                                             (4)                              

 
where D is pipe internal diameter and g denotes the gravitational acceleration. The other two dotted lines, indicated 

by (O) and (N) in Fig. (4), represent the loci of the specified operating condition with and without adaptive control of 
the flow regime. More exactly, (O) represents the optimized operating condition, defined by  setting  Ug to be 
approximately  5% higher than the transition velocity, while (N) represents the nominal condition determined by 
imposing Ug to be 2 or 3 times higher than the transition velocity (18 m/s for the particulate used in this work, according 
to Marcus et al., 1990). 

 
 

 
Figure 4. Schematic representation of a state diagram for a pneumatic transport line in terms of the mass flow ratio 

µ (Εq. (3)) and the Froude number Fr (Eq. (4)). 
 

Within this framework, and considering the objective of minimizing the power consumption associated to the 
transport process, the variable d quantifies an abstract distance or error between the optimum and the actual flow regime 
and, thus, should be kept as closest to zero as possible. The way this should be done is implemented through the internal 
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parameterization of the controller, which should be scheduled to cope the differences associated with the flow regimes. 
If the operation point lies below the optimum line (O), i.e. d > 0 as indicated in Fig. (4), the flow regime is dispersed 
and smooth corrections are required to bring d back to zero. Usually in this flow condition, KD is tuned at relatively 
high values in order to produce an asymptotic trajectory back to (O) to avoid overshoots. If the operation point lies 
within (O) and (T), that is d < 0 but d ≈ 0, a fast correction is needed and some overshooting is allowed or even desired. 
To reproduce this behavior KP must be comparatively big and KD ≈ 0. For the last, if the operation point lies above (T), 
the flow regime is dense and the transport line  is possibly blocked. Special procedures should be triggered in order to 
protect the equipment and to restart the process again.  

The main advantage of using neural network models is that such a complex control strategy can be easily 
implemented by adjusting their internal weighting coefficients and bias, according to a training rule such as the 
supervised back-propagation method for instance. Another important advantage is that the variable d does not need to 
be explicitly calculated from the input variables. Applying an on-site calibration technique (Rolnik and Seleghim, 2002) 
the controller can gain knowledge of the loci of the optimum operation points (line (O) ), through which d can be 
reproduced directly from the corresponding flow rates and pressures. In other words, the neural model will work as a 
nonlinear fit between the input and  output variables. 

 
4. The test facilities and the test grid 
 

The validation tests were done at the experimental facilities of the Thermal and Fluids Engineering Laboratory of 
the University of São Paulo at São Carlos (NETeF-USP). The pneumatic transport loop, drawn schematically in Fig. 
(5), has a transparent 45 mm inner diameter test section, extending horizontally through 12 m and vertically through 
9 m. Air is supplied by a 60 hp screw compressor (1), capable of generating air speeds up to 40 m/s in the transport line. 
The air flow rate is controlled with the help of a servo-valve (2) and measured by an orifice plate (3), instrumented with 
temperature and pressure transmitters (differential and absolute). The particulate is introduced in the transport line 
through a venturi feeder (4), which receives the particulate from a screw conveyor (5). The solids flow rate is controlled 
by imposing the rotation of  the screw conveyor with a frequency converter (6). A cyclone separator (7) is placed at the 
exit of the test section, from where the particulate may be returned to a separated storage container (8) for batch 
operation or, alternatively, to a rotary airlock (9) connected to the feeding silo (10) for continuous operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Schematic representation of the pneumatic transport test loop at the NETeF – USP. 

 
The particulate used in the tests was Setaria italica seeds with an average diameter DP = 2.5 mm and an 

approximately density of  800 kg/m3. Several steady state experiments were done with different combinations of gas 
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and solids mass flow rates resulting in µ ranging from 1.99 to 6.15 and Fr ranging from 18.4 to 29.2. In dimensional 
units this correspond to mg between 79.6 and 133 kg/h, and ms between 158 and 820 kg/h. The transition line (minimum 
pressure drop line) agrees extremely well with the following correlation proposed by Marcus et al. (1990) 

 
-dµ = 10 Frχ                                                                                                                                                                             (5) 

 
in which the exponents δ and χ are calculated from the average particle diameter (in mm) according to 

 
Pd = 1.44 D + 1.96                                                                                                                                                             (6) 

 
P= 1.1 D + 2.5χ                                                                                                                                                                (7) 

 
The test data points and the corresponding transition line is plotted in Fig. (6). 
 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 

 
Figure 6. State diagram and corresponding transition and constant solids mass flow rate lines. 
 
5. Power optimization results 
 

By controlling the flow regime it is possible to operate near the dense-light transition line and obtain a significant 
reduction in the power needed to transport a given solids charge. To be able to quantify this, a power optimization 
factor was defined according to the following expression 

 
nom adaptive

nom

W - W
e =

W
                                                                                                                                                               (8) 

 
in which Wnom and Wadaptive indicate the necessary power respectively without and with adaptive control of the flow 
regime. These powers were calculated by assuming isothermal flow (RT = constant) and imposing energy balance, that 
is 
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                                                                                                                                                    (9) 

 
where P1 is the pressure at the inlet of the test section (1.5 m downstream from the solids feeder) , and PN the  pressure 
at its outlet (1.5 m upstream from the cyclone).  

Results concerning the power optimization factor obtained at constant solids flow rate are listed in the following 
table. It is quite clear that the application of the proposed flow regime control technique may result in power savings 
around 50%, for the experimental conditions of this work. 
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Table 1. Power optimization results calculated according to Eq. (8) and obtained at different constant solids mass flow 

rates. 
 

ms (kg/s) Wnom (kW) Wadaptive (kW) e (%) 

0.0739 2.63 1.34 48.91 
0.1037 3.15 1.56 50.68 
0.1228 3.23 1.63 49.45 
0.1343 3.06 1.55 49.34 
0.1395 2.99 1.54 48.60 
0.1437 3.12 1.42 54.49 

 
6. Conclusions and perspectives 

 
A technique for the adaptive control of gas-solids flow regimes occurring in pneumatic transport systems was 

proposed in this work. The control algorithm is based on two independent neural models, the first one being responsible 
for assessing the flow regime by defining proper target and gain values for the controller, the second one mimics an 
optimized gain scheduled PID loop and is dedicated to the calculus of the flow rate corrections in order to have optimal 
flow conditions. This technique allows the operation near the minimum pressure drop line in the state diagram and a 
significant reduction in the power consumption for the same solids charge, when compared with a non-controlled 
system operating at fixed nominal conditions. This is so because without adaptive control the carrier phase velocity 
must be 2 or 3 times higher than the light to dense phase transition to avoid the formation of dense structures such as 
dunes and plugs, which, depending on the characteristics of the material and on the availability of a pressure head from 
the carrier phase may cause a violent pressure surge or a possible line blockage. Experimental testes performed with 
Setaria italica seeds in a 45 mm i.d. pneumatic conveying line show that the proposed control technique is capable of 
producing power optimization factors of up to 50% approximately. Future work should include systematic experimental 
tests, with different types of particulate and extended flow rate ranges, in order to assess the applicability of the 
proposed control technique in industrial processes. 
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