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Abstract. This paper addresses the mobile robot motion planning problem in outdoor environments, which are large,
sparsely occupied workspaces with uneven terrains. We present results in path planning using an efficient discretization
method based on Constrained Delaunay Triangulation (CDT) and classical graph searching algorithms. CDT has been
proven to be a good method for representing complex shaped objects and regions, very common in outdoor environments.
In order to combine several constraints associated with different forms of interaction between robot and workspace, map
overlay techniques are used.
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1. Introduction

Robot motion planning is a broad field of research that includes manipulator motion planning and mobile robot na-
vigation. In this second field, several works were developed for guiding mobile robots both in indoor and outdoor envi-
ronments [Latombe, 1991]. In this sense, the mobile robot motion planning problem is basically stated as the problem
of leading the robot from an initial place to another, by avoiding obstacles in the environment. When we are considering
indoor motion planning, examples of obstacles are walls, stairs, furniture, people and other objects that can compromise
the robot safety and the execution of the task in case of collisions. Therefore, obstacles can be thought of forbidden regi-
ons for the robot path. Besides forbidden regions, outdoor environments, which are large, sparsely occupied workspaces
with uneven terrains, also present motion constraints related to the characteristics of the robot and its interaction with the
environment. These constraints are not necessarily obstacles to be avoided, but also must be considered while planning
the robot motion. For example, consider a wheeled robot transversing a golf grass field with small sand regions. Suppose
the robot’s mobility is compromised (but is not impossible) in the sand. Then, it would be interesting (but not mandatory)
to the robot to avoid the sand regions and navigate in the grass. However, depending on the size and position of those
regions, even losing efficiency in the sand, it could be more efficient to the robot to cross a specific sand region instead
of avoiding it. In this paper we present a path planning approach that considers dynamic and static constraints to the
robot motion while it is navigating in outdoor environments. We allow for several simultaneous constraints such as mobi-
lity, communication and power consumption, and also include the traditional obstacles represented by forbidden regions.
Since we are dealing with large workspaces with complex shaped regions we use an efficient discretization algorithm,
over which paths are constructed based on classical graph search algorithms.

In [Kobilarov and Sukhatme, 2005, Guivant et al., 2004, Guo et al., 2003, Yahja et al., 2000, Mitchell, 1991] solutions
to the outdoor path planning problem are proposed. In [Guo et al., 2003], the outdoor environment map is decomposed
into a regular grid and theA∗ shortest path algorithm is used to minimize a cost function composed by terrain roughness,
slope and distance between cells. The apparent problem of that approach is the use of regular grid decomposition, which
is inefficient to represent large workspaces. [Kobilarov and Sukhatme, 2005] also decompose the environment in a regular
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grid. They define a cost metric for each cell based on the time the robot spend to transverse it. A kinodynamic simulation is
needed to define this metric and a Probabilistic Roadmap [Latombe, 1991] approach is used to plan the robot’s trajectory.
[Yahja et al., 2000] proposes a quadtree based discretization of the environment map. Quadtree is a non uniform represen-
tation of the map that has the advantage of representing regions of interest, such as obstacles, with high resolution cells,
and other regions with a low resolution discretization, thus yielding in a smaller number of cells. Their framed-quadtree
approach proved to be more efficient than the regular grid and standard quadtree decomposition. After cell decomposition
the authors use theD∗ algorithm [Stentz, 1995], which is a dynamic version ofA∗, to find the shortest path in the map.
In their case, a distance based cost function is used. To improve map discretization [Guivant et al., 2004] used a hybrid
representation of the environment based on feature maps and other metric functions. The map is divided in connected
triangular regions, defined by the position of three environment landmarks, and a local function, which can represent for
example the terrain occupancy, is defined inside the triangles. Differently from all these works, in [Mitchell, 1991], paths
are searched in a continuous map. The author uses a continuous version of the Dijkstra algorithm and exploits the fact
that shortest paths obey Snell’s Law of Refraction at region boundaries. Constant costs are defined for different kinds of
terrains and used in the path minimization algorithm.

Among all these, our work is closely related to [Guo et al., 2003], [Yahja et al., 2000] and [Mitchell, 1991], but with
important differences. First, differently from [Guo et al., 2003], which computes cost values for each cell of a decompo-
sed map, we propose a formal way to compose cost functions based on overlay of continuous maps. Second, although
we work initially with continuous maps like in [Mitchell, 1991], our path searching approach is based on discrete maps.
However, instead of regular or quadtree decomposition, we decompose the environment using the Constrained Delaunay
Triangulation (CDT) [Shewchuk, 1997]. Similar to quadtree, CDT is a non-uniform decomposition that yields in high
resolution cells in the complex regions of the environment. An important advantage of CDT over the quadtree repre-
sentation is the smaller number of cells when representing non-poligonal, high complex structures, common in outdoors
environments [Shewchuk, 1997]. Observe that, differently from [Guivant et al., 2004] we do not define metric functions
inside the triangular cells (that in our case tend to be much smaller than the ones defined in [Guivant et al., 2004]), but due
to the triangulation process, to each triangle is assigned a constant weight, based on the combination of several motion
constraints. We use Dijkstra’s graph search algorithm (or even the suboptimal versions of them,A∗ or D∗) for finding the
robot path.

2. Problem Formulation

Consider a robotR operating in an outdoor environment. The environment is represented by a set ofk thematic maps
M = {M1,M2, . . . ,Mk}. Each map is defined asMi = {(x, y, zi(x, y))|xmin ≤ x ≤ xmax; ymin ≤ y ≤ ymax},
where0 ≤ zi(x, y) ≤ +∞ is a function that represents a specific characteristic of the environment in the robot position
(x, y), such as, obstacles, slope, communication intensity, density of people, and others. Actually,zi(x, y) gives a cost
of transposing per unit distance. At first, no map discretization is assumed and(x, y) ∈ R2. Higher values ofz(x, y)
represent challenging regions for the robot or the completion of its task. In the extreme,z(x, y) = +∞ represents a
impossibility for the robot motion. We propose the composition of all environment characteristics to be represented by
the mapW given by:

W = {(x, y, g(x, y))|g(x, y) =
k∑

i=1

wizi(x, y)}, (1)

wherewi are weighting factors, used to establish priorities between the maps. We now define the forbidden regions of
the map,O, as the regions wherez(x, y) = +∞ and the free regions of the map asF = W/ Oε, whereOε is a region
within ε distance ofO. In this case, the constantε plays the role of a safety margin for the robot’s motion. It can also
encapsulates the robot size and errors in the robot’s pose estimation. Our goal is to find the path given by a curveL ∈ F ,
which connects the start robot positionq0 = (x0, y0) to the goal positionqg = (xg, yg), and minimizes the cost functional
given by:

I =
∫

L
g(x, y)ds , (2)

whereds is the differential of the arc length.

3. Path Planning Approach

Our solution for the problem formulated in the previous section is divided in three main parts, namely: (i) map
overlaying, (ii) map discretization and (iii) path searching. Each of these parts will be explained in details next.
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Figure 1. Map Overlaying. (a) MapA. (b) MapB. (c) Combined map.

3.1 Map Overlaying

A proper data structure to represent thematic maps is aplanar map[Gangnet et al., 1989]. A planar map subdivides
the plane into vertices, edges, and faces. In this paper, it is considered that the outdoor environment is represented by a
set of planar maps.

The way we represent the cost to transpose a given region in a specific thematic map is similar to [Mitchell, 1991].
Thef th face of the map,Υf ⊂ R2, represents a specific property in a thematic map and have assigned to it a transposing
costαf ∈ [0,+∞] per unit distance. Therefore, the cost functionzi(x, y) presented in the previous section can be defined
as:

zi(x, y) = αf ∀(x, y) ∈ Υf , f = 1, 2, . . . , n, (3)

wheren is the number of faces in the mapi.
To each edgee of the map it is also associated a costαe ∈ [0, +∞]. In general, in case of two adjacent facesf1 and

f2 the cost assigned to a separation edge is the lowest one among the two faces:

αe = min(αf1 , αf2). (4)

The total costβ(P1, P2) of a line segment that links two pointsP1 andP2 placed on a facef is given by:

β(P1, P2) = αf |P1P2| , (5)

where|P1P2| is the Euclidean distance. Equation (5) can also be used to compute the total cost in the case ofP1 andP2

located on an edgee. The only modification is the use ofαe instead ofαf .
Map overlaying is a technique to combine information from different thematic maps. In order to perform the overlay

of two maps we initially compute the intersection among all segments of the two maps [Chazelle and Edelsbrunner, 1992,
Balaban, 1995]. The next step is to classify the regions of intersection and combine the original costs per unit distance
[U. Finke, 1995]. Figure 1 shows two mapsA (Figure 1(a)) andB (Figure 1(b)) and also the combined one (Figure 1(c)).
We propose to use a weighted sum of the original costs per unit distance to compute the costs of the overlayed mapW
according to Equation (1).

3.2 Map Discretization

In our methodology we discretize the resultant overlayed map. We propose the use of the Constrained Delaunay
Triangulation where the initial robot’s positionq0 and the targetqg are forced to be vertices. Different triangles sizes
can be obtained in this process, which makes this method powerful and flexible. In regions where the geometry is more
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Figure 2. Constrained Delaunay Triangulation for the overlayed map presented in Figure 1.

complicated, higher triangles densities are used. On the other hand, in regions with simpler geometry less triangles may
be used. If it is desirable to have a good approximation of the continuous optimal path, then this type of discretization is
useful for reducing the computational complexity of the computation for high complex geometry maps. Notice that other
triangulation processes could produce similar results. One advantage of CDT over other triangulation approach is that,
because it is a very well known triangulation, several free computational tools are available to compute it.

The algorithm we have implemented in this paper was theDelaunay Refinement[Shewchuk, 1997]. This technique
operates by maintaining aDelaunay Triangulation, which are refined by the insertion of additional vertices. The placement
of these vertices is chosen to enforce boundary conformity, to satisfy the constraints imposed by the pointsq0 andqg, and
to improve the quality of the triangulation. Figure 2 shows a possible CDT computed for the overlayed map presented in
Figure 1. The Delaunay triangulation of a set of points,P, is a set of triangles connecting the points satisfying an “empty
circle" property: the circumcircle of each triangle does not contain any of the points ofP in its interior. This triangulation
has many interesting properties as presented in [de Berg et al., 2000]. Further details can be found in [Shewchuk, 1997].

3.3 Path Searching

Based on the generated triangulation of the overlayed map we must search for a minimum cost path from the initial
vertexq0 to the goal vertexqg. In order to compute such a path, we first create a graphG(v, e) where the triangulation
vertices are the graph nodes,v, and the triangulation edges are the graph edges,e. The costs per unit distance associated
with the graph edges are the same ones associated with the edges of the triangles.

As we can see in Figure 2 to each triangle we assign a cost per unit distance. Indeed, the triangles are faces of the
discretized overlayed map and they inherit the cost value of the non-discretized faces they belong. Likewise, the edges
of the overlayed map, which are also edges of the triangulation, keep the same cost per unit distance they had before the
triangulation. The new edges created by the process of triangulation receive the same cost assigned to the triangles with
minimum cost that share the respective edges. This is basically the same procedure described in Equation (4), where faces
f1 andf2 are triangles that share the given edgee of the triangulation.

Therefore, given two graph nodesv1 and v2 sharing an edgee, the total costβe of following e from v1 to v2 is
computed by Equation (5). Figure 3 shows the graph we generated from the example of the triangulated map in Figure 2
and the corresponding costs equations.

Our continuous problem is now transformed to a discrete one stated as follows: Find the minimum cost path fromq0

to qg in the graphG(v, e), given the edge costsβe computed as described before. This path searching can be performed by
very well known algorithms such asA∗, D∗ or Dijkstra [Dijkstra, 1959]. By using the last one we can guarantee we find
the optimal path for the given graph. Notice that we are not saying we find the optimal path for the continuous problem.
The higher the discretization the better is our approximation.

Using a high resolution map decomposition can be computationally expensive. So, we use a postprocessing procedure
to improve our initial solution without using a large number of nodes. Given three consecutive pointsP1, P2 andP3 and
the segmentsP1P2 andP2P3 in the path, we substitute these two segments by the segmentP1P3 if the last one is less
expensive than the sum of the other two. An example of such processing is presented in Figure 4.

Simulated results that exemplify all three steps of our approach are presented in the next section.
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Figure 3. Graph created from the triangulated map presented in Figure 2.
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4. Simulations

In order to illustrate our path planning methodology we have used a hypothetic environment, which is represented
by four maps, as shown in Figure 5. The proportion between the two dimensions of these maps is2 × 1. Our software
was developed in C++ with the additional use of some specific data structures from CGAL (Computational Geometry
Algorithms Library) [CGAL, 2005]. More specifically, we have used “Planar Nef Polihedra” and “2D Planar Maps” data
structures which allows for robust map overlay computation. Furthermore, we have used “Triangle” [Shewchuk, 1996]
program to perform the Constrained Delaunay Triangulation.

Figure 5(a) shows the terrain map. For each kind of terrain we have defined values related to the robot motion
capability. In this specific case, water received the higher value, and was followed by sand, grass and pavement. The
environment has two access ramps that received a value between sand and grass. The map in Figure 5(b) represents the
obstacles in the environment. Notice that the only obstacle is a retangular building. Figure 5(c) is a map associated to
the probability the robot has to meet people in its way. Observe that high probabilities occur in the neighborhoods of the
building in Figure 5(b). Figure 5(d) represents the communication intensity map. Three fixed antennas were responsible
for the robot communication with its operator. Because it is desirable that the robot communicates its sensor data while
moving, low cost values were assigned to the regions with high signal intensity.

Initially, we will search for robot paths in the terrain map only (Figure 5(a)). The first step of the proposed methodology
is the environment triangulation. The triangularized terrain map can be seen in Figure 6. Notice that the resolution of the
triangulation is higher at the more complex regions of the map. In Figure 6 the cost values of each region are represented
by the gray tones. The darker is the region, the higher is its cost. After triangulation, we have applied the Dijkstra
algorithm over the resultant graph and found the path shown in Figure 6(a). After postprocessing, the final trajectory
is shown in Figure 6(b). In both cases, observe that the path may lead the robot safely to the goal since it avoids the
forbidden regions, such as water. Also, observe that, even that the distance from start to goal position passing through the
ramp on the top seems to be smaller, the path is mostly confined in the pavement, where the locomotion cost is smaller
than grass and sand.

We now combine the terrain map with obstacle and probability of people maps by using the overlay technique proposed
in Section 3.1. The resultant map is shown in Figure 7(a). By comparing the gray tones in this map with the ones in
Figure 6, it can be perceived how the overlay of maps have changed the cost associated with some regions of the terrain
map. Figure 7(b) shows the resultant path after the application of our path planning approach. Notice how the robot avoids
the regions where there is probability of people. By avoiding these regions, the robot do not need to use real time obstacle
avoidance algorithms, which would change the robot path.

In the last simulation presented in this paper, we have overlayed all maps in Figure 5. The resultant map is shown
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Figure 5. Four maps from the same workspace. (a) Terrain map; (b) Building map; (c) Probability of people map;
(d) Communication signal intensity map.

(a) (b)

Figure 6. Paths planned in the terrain map. (a) Path resultant from Dijkstra; (b) Postprocessed path.

in Figure 8(a). Notice that the introduction of constraints related to communication signal strength demanded a fine
discretization in the regions we had large triangles, such is the case in the right hand regions of the workspace. This fact
was expected since we have a more complex geometry. The path found for this map is in Figure 8(b). In order to maintain
communication the robot performs a different path and cross a small piece of sand, what in other situations was avoided.

Performance measurements of our implementation are shown in Table 1. The simulations were executed in a Pentium
IV, 1.6 GHz, 512 MB of RAM running Windows XP. One should notice that the time spent to build the needed data
structures is also included in the respective presented numbers. From Table 1 we conclude that the more complex are the
maps the more expensive is the computation. Furthermore, the discretization and the postprocessing steps are irrelevant
comparing to the other two. Although it does not seem to be possible to do all this computation in real time, we believe
our approach is feasible since we do not intend to have a deliberative planning being computed on the fly.

Simulation - Figure 6 Simulation - Figure 7 Simulation - Figure 8
Number of Vertices in the Overlayed Map 112 226 318

Number of Vertices after Triangulation 595 1093 2848
Overlay time (s) - 27.85 72.88

Map Discretization time (s) 0.38 0.33 0.43
Graph Search time (s) 7.05 22.13 62.80
Postprocessing time (s) 0.06 0.06 0.04

Table 1. Performance measurements for the simulated examples.
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(a) (b)

Figure 7. (a) Overlay of terrain, obstacles and probability of people maps; (b) Postprocessed path.

(a) (b)

Figure 8. (a) Overlay of the maps of terrain, obstacles, probability of people and communication; (b) Postprocessed path.

5. Conclusions and Future Work

This work presented a path planning approach based on map overlay, triangular decomposition, and simple graph
search algorithms. The approach was used to plan mobile robot paths in outdoor environments. In this context, map
overlay allowed us to work with several simultaneous motion constraints, such as terrain roughness, obstacles, and density
of mobile obstacles. Triangulation proved to be an efficient non-uniform map decomposition tool, that was used to
precisely represent several complex maps. In this paper we have used the Dijkstra algorithm to find the optimal trajectory
for a given triangulation. For larger environments, non-optimal algorithms, such as theA∗, could also be used.

Next steps of this research includes the implementation of the proposed methodology for actual robots, such as our
team of Pioneer P3-AT mobile platforms. Our plan is to have in a few years an autonomous campus tour guide that
will be able to navigate at UFMG. This is a challenging goal, since, besides navigation, the robot will need to be well
localized in the workspace. Pose estimation algorithms are currently been developed by our research group. In relation
to navigation, although in this paper we have arbitrarily defined values for the cost of each motion constraint, theoretical
and empirical studies must be executed to generate more consistent results. An example of terrain modelling can be
found in [Iagnemma et al., 2004]. Also, we intend to compare the approach of this paper with a different methodology
based on electromagnetic field computation. We are currently working on adapting our indoor approach based on this
theory [Pimenta et al., 2005] for outdoor environments.
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