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Abstract. In some recent papers (Terceiro and Fleury, 2003;Fleury and Oliveira, 2004), we have shown that the transla-
tional motion of one or two masses(sliders) should be used to minimize the vibrations induced by rotational motion on a
flexible manipulator. Optimal control methods have been used to generate slider trajectories in the same time period that
the manipulator takes to perform a rotational maneuvers between two fixed configurations. Solutions have been achieved
for a very light and flexible manipulator even performing quite quick maneuvers.
In this paper, the composed motion is presented in more details to emphasize the influence of the problem parameters.
Initial position of the sliders, for example, may lead to different types of trajectory. A new set of feasible trajectories are
also presented using a new Index of Performance applied to the same dynamic problem
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1. Introduction

Practical operation of many mechanical machines makes use of several internal motions to accomplish complex tasks.
Mechanical design standard procedures assume independent element motions to avoid undesirable induced vibrations
and couplings. In most cases, the resulting design leads to heavy structures and slow motions for the machines. From the
other side, the dynamic characteristics of modern machines demand increasing larger velocities, accelerations and reduced
weights and inertias. For many applications, structural flexibilities must be considered since the early design stages in
order to assure good vibration attenuation. Based on the examples of rotating cranes and rotative/prismatic joint robots,
this work explores simultaneous rotating/translational motions to minimize vibrations on a light one-link manipulator that
performs large rotational maneuvers.

The basic question we intended to investigate is how the motion of independent parts may contribute to reduce the
vibration levels of the whole system. Although restricted to simple systems, the results achieved are encouraging to extend
the research to other more complex applications.

Here, the objectives are the achievement of suitable system models and the synthesis of optimal controllers using the
torque applied to the hub where the flexible arm is fixed and the forces applied to the sliding masses as control variables.
The case of a single sliding mass has been presented in the works of Oliveira (2000), Fleury et al. (2002) and Fleury and
Oliveira (2004). The investigation has been extended to include any number of sliders and structural modes (Terceiro,
2002). In all cases, the dynamical models of the structural system have been derived through the Extended HamiltonŠs
Principle resulting in a set of coupled integro differential non linear equations where system parameters are time and
space variant due to changes in the inertia terms. Using substructuring techniques, arm and sliders motions have been
separated and systems responses have expanded in products of spatial and time functions. Cases where the sliders move
according to pre specified trajectories while the flexible arm performs large angular manoeuvers have been simulated and
analyzed (Oliveira, 2000; Terceiro, 2002). The control mode is still time variant, although linear, but if this was helpful to
understand the very influence of the composed torque sliders position controls on the elastic vibrations, many questions
about design parameters remain inconclusive and results were not considered satisfactory. A second approach, where
slider trajectories are control variables, leads to Optimal Control Problems (OCP). The resulting models are non linear
and time variant and optimal arm and slider trajectories are investigated through the use of RIOTSŠ95 (Schwartz et al,
1997), a computational package based on the Consistent Approximation Theory (Schwartz and Polak, 1996).

The optimal slider trajectories have shown that movement coupling between different structural elements may be used
as an efficient vibration control method (Terceiro and Fleury, 2003). From the other side, choice of system parameters and
initial conditions seemed to be critical for the optimal trajectories in terms of the demand of energy to get the objectives.
This is the topic we have investigated in this work. In the sequence, a brief summary of system modeling is presented.
After this part, old and new results on the optimization problem are discussed.

2. System Model

The conceptual design for the whole system is shown in Figure 1. Hub motion is driven by a DC motor and monitored
by an encoder. Two sliders run on each face of the flexible arm, driven by independent motors inside the hub. The
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description of the complete movement is usually compared to a rigid beam that follows the movemente as showed in
figure 2. The virtual structure is knowed "shadow beam".

Figure 1. Conceptual design of the flexible mechanism

Figure 2. Deformed and Shadow Beam corresponding to the flexible arm

The motion of the arm is supposed to occur in the horizontal plane (Oxy) in such a way that gravitational forces can be
disregarded. In order to apply the Extended Hamilton’s Principle and get the corresponding model one has to consider the
kinetic energies of the arm, of the two sliders and the hub, the elastic potential energy of the arm and virtual work of the
non conservative forces on the system, namely the torque of the hub (τ ) and the force on the each sliders (F1 and F2). The
resulting model is a set of 6 partial integro-differential equations whose solution is very difficult. One uses substructuring
techniques to get simpler models. Here, the substructures are the flexible arm and each of the sliders.

In the sequence, substructure motions are synchronized and normalized to get a set of matrix equations in the form
(Terceiro, 2002):
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In Equations (1) and (2), η is the system response considering a number p of vibration modes φk, k = 1, · · · , p
included in the model. Mi, i=1,2, are the slider masses and li correspond to the slider positions. And θ is the angular
position of the beam and τ is the applied torque. Using Newton’s Law on the rotational motion , one can get:(
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where JB and JC are the mass moments of inertia of the arm and of the hub, respectively. Equations (1) and (4) describe
the motions of the arn and of the two sliders. For more details, see, for example, Terceiro (2002).

3. Optimal Control Problem

Considering the hub/flexible arm structure, the control variables are the external forces, due to reaction to the slider
movements, besides the torque applied to the hub. The system is highly non-linear. The state model is given:
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The elements of matrix S are written acoording to in Eq. 2 with the necessary adaptations.



4. Simulation Results

Although the dynamical model has been derived for an arbitrary number of vibration modes, from now on just the first
mode is considered. This is justified by the complexity of the numerical problem that has to be solved, a fact that does not
allow as many modes as desired. For the solutions of the Optimal Control Problems (OCP), numerical simulations have
been performed using the RIOTS95 package (Schwartz et al ., 1997). One has considered as a valid case the simulated
problems that satisfy the rigid convergence criterium of the RIOTS algorithm. Table 1 shows the main parameters of the
flexible arm. Running optimal control problems means inclusion of several new parameters. As the number of different
cases increased a lot (Terceiro, 2002), a more detailed analysis brought about aspects on the system behavior that were
not perceived before. One of the key aspects is the control energy that has to be sent to each of the two sliding masses.

Table 1. Physical parameters of the Optimal Control Problem

Module of Young of the aluminium E = 7.11010 Pa Length of the arm L = 0.7 m
Thickness of the arm h = 0,001 m Width of the arm b=0.0254 m
Mass of the arm m = ρB ∗ L ∗ b ∗ h =

0, 0482 kg
Linear density mass of the arm ρ0 = m/L

Density of aluminium ρB = 2710kg/m3 (Al) Moment of inertia of the hub Jc = 1.3510−4

Moment of inertia of the transversal
section of the arm

Iv = b ∗ h
3

12 Slider mass 1 M1 = 0.05 ∗m

Moment of inertia of the arm Jv = ρ0 ∗ L
3

3 Slider mass 2 M2 = 0.05 ∗m

Table 2. Main conditions for the optimal control problem

Case 1 Case 2

Index of the performance
∫ T
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)
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∫ T
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1(t) + x2
2(t)

)
dt

Final Angular Velocity 0 0
Final Tip Vibration of the arm free free

Final Position of sliders free free
Final Velocity of sliders 0 0

Figure 3. Arm Tip Vibration

The first new result compares 2 cases (1 and 2) where the first one uses an Index of Performance that deals with
displacements and velocities of the rotating arm and the second one includes just the tip displacement of the flexible
beam. In both simulations, to the contrary of the results already presented for two sliders, there are no constraints on the
trajectories. Conditions for simulation are resumed in Table 2.

Figures 3 to 6 below show the system response when using two sliders and conditions given in Table 2.



Figure 4. Sliders Trajectories

Figure 5. Torque on the hub and forces on sliders 1 and 2

Figure 6. Energy delivered to slider movements

From these results, one can observe that the exclusion of mode velocities from the Objective Function leads to very
smooth trajectories. From the other side, the total energy is one order of magnitude above. Case 2 shows very interesting
curves for mass movements. From Figure 4, it is possible to verify that one of the sliders almost stops in the middle of
the trajectory. Besides that, it seems that the vibration attenuation is reached using just one of the sliders. The optimal
solution leads to a large movement of a ŞchosenŤ slider while the other one performs quite small movements. Another
important remark is that, although there is no constraint, the two sliders remains over the beam during all the manoeuver.



5. One Slider Results

These results motivated the investigation on the influence of other parameters on the system response. First, it was
decided to run the system with just one slider and no trajectory constraints, leading to a situation partially explored by
Oliveira(2000) and Fleury and Oliveira (2004). Only arm and sliding mass speeds at the time corresponding to the end
of the manoeuver were imposed null. The main differences are related to the Indexes of Performance and to the initial
control used to start the simulation.

Four new cases have been selected and simulated. For Case 3, the IP is
∫ 4

0

4x2
1(t) + x2

2(t)dt and, for Case 4, it is∫ 4

0

4x2
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2(t) + F 2(t) + τ2(t)dt both running on the same initial control guess. For Case 5, the IP is the same as

for Case 3 and Case 6 repeats the same IP as for Case 4, but running on a different initial controls. The results for the tip
arm vibrations are shown in Figure 7. The box in the right of the figures indicate the slider initial position. The x axis is
the time to complete the rotation, that is four seconds.

The influence of the new Index of Performance on the response shape is significant (compare the two graphics at left
to the ones at right). From the other side, the initial control does not seem having a great influence on the response, as
expected. Small differences appear in the slider trajectories, as depicted in Figure 8, below.

Even in these cases, it is worth observing the smoothness of the trajectories when torque and forces are minimized
among the other variables. Comparing the new results to those obtained with just one slider in Fleury and Oliveira (2004),
one must point out that part of the trajectories achieved in Cases 3 and 5 correspond to the slider moving back of the hub,
a situation already detected and technically feasible for the flexible mechanism.

In terms of energy, the inclusion of torque and forces on the Objective Function also leads to better performances.
Figures 9 and 10 show the torque applied to the hub and the force applied to the slider to get the optimal trajectories. One
can see that torque and force are almost one order of magnitude bigger for Cases 3 and 5.

Torque and force should be resumed to the total energy delivered to the system to perform the rotational manoeuver
while minimizing beam vibrations. This is done in Figure 11.

From Figure 11, one can see that except for the situations corresponding to the initial position of the slider near the
arm tip, the energy supplied to the mechanism is one order of magnitude smaller when torque and force are minimized.

6. Concluding Remarks

Some interesting remarks can be extracted from the 6 cases presented and analyzed. The most important is the
improvement on the system behavior when the control energy is included in the Objective Function for joint minimization.
Trajectories become smoother, less control energy should be expended. Second, one must point out that this situation
occurs when the flexible mechanism carries one or two sliders, thus signaling that both cases can lead to good responses.
Movements are easier to implement when two sliding masses are employed but almost the same performance can be
reached with one slider.

Figure 7. Arm Tip Vibration

The other aspect we intended to emphasize in this paper is the independence of the optimal solutions relative to the
initial control guesses. Although the influence of the initial control proved to be very small, the algorithm seems to have
a "memory" associated to the initial guess. A definitive answer to this question is still lacking.

The authors are still investigating other aspects on the optimal slider trajectories. The most urgent is the extension of



Figure 8. Position of the sliders during the manoeovers

Figure 9. Torque applied to the hub

Figure 10. Force applied to the slider

the simulation programs to include second and third modes. The problem here is the model dimension, that leads to many
hours of computer simulation to achieve reasonable results. At the same time, an experimental set up in order to validate
models and solutions is of fundamental importance to proceed in the investigations.



Figure 11. Total energy demanded for the flexible mechanism
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