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Abstract. Typically control systems are designed aiming at the specification of parameters of the controller that is
usually described by a differential equation. In most cases, the controller is artificially constructed and you can also
update their initial conditions. In the design of optimal quadratic regulators to update initial conditions of the optimal
controller can significantly improve the performance of the controlled system. In this work is also considered other
constraints on the controller design, for example, restrictions on output and entry and also restrictions on the decay
rate. A design procedure formulated in the context of linear matrix inequalities (LMIs) to update the initial conditions
in Pl controllers considering also other constraints is presented. The applications of the proposed method for
controlling an inverted pendulum and the control of a chemical reaction prove its effectiveness.
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1. INTRODUCTION

In the design of automatic control systems, the goal is to obtain a control law that supplies the inputs of a process, so
that the system has an acceptable dynamic performance. In the vast control literature, there are several results on pole
allocation in control system design. However, the correct location of the zeros, for instance of a transfer function, can
also be indispensable to obtain a good transient response. It is possible to allocate zeros of transfer functions, by using
available dynamic feedback structures (Kienitz and Grubel, 2000). In many aerospace control systems, which request
high precision, the design of optimal control has been considered a very important subject. For instance, a method that
has been very much used is optimal control based on the minimization of quadratic performance indexes. In Ogata
(1997), it was observed that the initial condition of a controlled system influences the quadratic performance index.

Many servo control schemes in mechatronics systems, such as hard disk drives, must meet the specifications of both
fast movement and precise positioning on a known reference. To meet this requirement, one servo structure for fast
access and other for precise positioning are designed. Then, the control is switched between these two servo structures.
This type of servo system is called Variable Structure Control (VSC). Each servo mode can be optimally designed by
the minimization of its desired performance index. Therefore, the remaining problem is how to switch from one mode
to other. In Yamaguchet al., (1996), is proposed the method called Initial Value Compensation (IVC) to improve the
performance of the transient response after switching. This method was also used with the intention of reducing the
stabilization time of the controlled system (Johansson, 2000; Hatoak, 2011). In these references, the design goal
was to minimize a quadratic performance index (denominated IVC 1), with the reference signals equal to zero. The
plants and controllers in these researches are discrete-time systems. In €eadeir2002, it is considered a controlled
system, consisting of the plant and one or more dynamic controllers, continuous in the time, with a step reference
signal, and it is shown analytically that the initial conditions in the controller can be modified, improving the transient
response of the system, according to a quadratic index. A modification of the initial conditions in the controller can be
interpreted as a change in the positioning of the zeros of the system. In Teixaira2006, the authors present an
alternative method for optimum compensation of the initial conditions on the controller, in the case considered the
integral type, based on LMIs. This work is also considered other constraints on the controller design, for example,
restrictions on exit and entry and restrictions on the decay rate. A LMI-based design procedure to update the initial
conditions in PI controllers considering also other constraints is presented. This article is organized as follows. In the
next section is revised the first method proposed in Teixiral. (2006) for the optimal specification of initial
conditions on the controller using LMIs, the design of optimal quadratic regulators to update the initial conditions on
the controller. In Section 3, we approach the update on the controller when considering further restrictions on the
controller design, such as decay rate and restrictions on exit and entry. In Section 4, we apply the methods presented in
the control of an inverted pendulum and the control of a chemical reaction. Section 5 presents conclusions.

2. STATEMENT OF THE PROBLEM

Given the system shown in Figure 1, will design both a mﬁtﬁx{— K K, ] and the optimal initial condition,
o, the controller in the case considered the integral type:

u(t) = -Kx p (&) + K| &(t) . @
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Figure 1 - Closed-loop System.
The system is described in state variables as:

(1) =Apxp(t)+Bput), @
y(®) =Cp xp(t), 3)
e()=r(t)-y(@), (4)
c(D=e@®=r®-Cpx,(), ®)

being that x,(t) 0" is the state vecton(t) 77 is the input vector and given in (1§¢) 70 , e(t) is tracking error
the vector error and (t) is the referencep, 70™", B, 0™ and Cp 0™ are constant matrices.

From equations (2)-(5) can describe the dynamics of the system by:

Xp (t) _ Ap © Xp(® |, [Bp 0
{ f | |-Cp 0| e oo POF O, ®6)
being thatO0 denotes a vector with all elements null and sizel.
Defining
Xe(t) = Xp(t) = X p();  Le(t) =€ (1) ~<();  Ue(t) = u(t) —u(e). @)
Now, defining the vector-error of size (n +1) by
o) =[xe® &))" @)
Thus, the dynamics of vector-error is described by:
é(t) = Ae(t) +Bug(t), 9)
being:
A, O B - -
- p Bp= P =_ . = -
A{_Cp O},B{O] ue()=-Ket); K=[K -K] (10)
By replacing(9) in (8):
é(t) = (A-BK)e(t) (11)

2.1 Analysis of the Lyapunov Stability

In this case, the study of method of Lyapunov to analyze the stability of the closed-loop system (11) is
accomplished through the study of the following LMIs:

P(A-BK)+(A-BK YP < 0, P>0, (12)

Thus, of (12) doing a manipulation, multiplying both sides of (12) Pér and defining X=P1 and
M=K P 1=K X we have:

AX+XA'-M'B'-BM <Q X >0, (13)
being X = X T, which now being are LMIs. If these LMIs are feasible, ie presenting at least one so{ugiodM,
then the controller gain is given big =M XL, In the design of optimal control is desired to minimize a performance
index. Tanaka and Wang (2001), design an optimal fuzzy controller for nonlinear systems by solving an optimization
problem that minimizes the upper bound of a quadratic performance index. Then, this idea is applied to design optimal
control for linear systems.

2.2 Performance Index

The gain matrix of state feedback controller is obtainediby[K -K| ] in order to minimize the upper limit of the
index:
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Jue) = [ @7 (9Qe(d+ ug' (YR ue(t)) it 14)

being thatQ is a real symmetric positive definite matrix aril is a real matrix symmetric positive definite Br=0.
The following theorem provides an upper boundto

Theorem 1: The system (8) - (9) can be stabilized by controller (10), if there is a symmetric positive definite matrix
satisfying:

0| X
AX+XAT-MTBT -BM +[x —MT}Q <0, (15)
0 R|-M
X >0. (16)
Moreover, the performance index satisfies
3 e )< e’ (0P ), (17)

being P=XteK=MP.
Proof: See Teixeirat al.(2006).

Inequality (15) can be transformed into LMI. The Schur complement (Boyd et al., 1994) converts a class of nonlinear
inequalities in linear matrix inequalities. Following is presented a controller design “sub-optimal” based on LMIs,
which stabilizes the system and minimizes the upper bound of performance index based on the result of Theorem 1.

Theorem 2: Given matricesA and B of system (9)-(10), and the initial conditie(0), then X = X' and M
matrices that allow determining the feedback gain that stabilizes the system and minimizes the upper bound of
performance index]; can be obtained by solving the following LMIs:
minimize A
X, M

subjectto

{ p eT(O)} o 8)
e (0 X

X >0, (19)

AX+XAT-M"BT x,Q -MTyR
Jaox -1 0 <0 (20)
-JVRM 0 -1

Of the solution of LMIs, the feedback gain can be obtained by the expreifs'raMX_l.

Then the performance index satisflagu, ) < e' O)Pe®0) <A, withX = p1
Proof: See Teixeirat al. (2006).

Remark 1: From the definition in (7) e (8):
- Xp(t)'xp(m)} 0 :[Xp(o)'xp(w)}z[xo}
0 { f0-é | 07 e |Tla ) e

Remark 2: If the plant (2)-(3) has no transmission zeros at the origin, then (more detail, see Btiakjra006), xo

is known and it is not a function dk oré, . Thereforeé; can be arbitrary chosen and offers a new degree of freedom

in the design of the controller and the value can be chosen conveniently. So is the choice of a new degree of freedom in
controller design. The problem of optimal controller design, to update the initial conditions of the controller, using
LMIs defined below.

2.3 Specification of the Optimal Compensation of the Initial Conditions of the Controller

Consider the following problem:
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Problem 1: Consider the system described by (9)-(10). Suppose that the reference(ihgaitstep function with value

equal torg) is applied int =0:  r(t) = ] o, to t20,
0, to t<O,
where r, is a known real constant. Determifje the compensation ir§|(t) in t=0, such that there exists

p=p' >0, for the solution of the following LMIs:
(i) P(A-BK)+(A-BK) P < 0;

(ii) the upper bounde’ (0O)Pe(0), of the performance function below is minimized:

) =[" (eTQe+ u'R ue)dt ,

whereQ is a symmetric and real positive definite (or semi positive definite) matrixRarid a real constant, and
Rz=0.

The solution proposed is shown in Theorem 3 below:

Theorem 3 Given the matrices and the system (9)-(10), and initial condétgn(()) , the Problem 1 has solution when
the following LMIs are feasible:

minimize A
Xll’le'XZZ’Ml’MZ’fl
subject to
T
{Xn X12:l>0, (22)
X12 X22
Aoep0 4
ep(O) X11 XlzT >0 (23)
4 X12 X2
U11 U1 Vi1 Vi -M{"VR
T T T T
Ul =Xy,Cpl =CpXgy Va1 Vo —M'VR -
T T
vlTl v1T2 -1 0 0 <0
Vis Vy, 0 -1 0
-VRM; -JVRM; 0 o -1 |

where:
Vi1=X1Qu+ X12Tle V1o = X11Q12T + X12TQ22 V21 = X15Q11 + X 5,Qp5: Voo = X12Q12T + X5Q2; M = [M 1 M 2]

T T
Ug1= XA, + A Xy ~M{B,=B,M ;U;p = A, X, - X,,C,7-B,M ;x:liill ;:12} : \/6:[811 %12}
12 X22 12 Q22

-1
A B 0
ep@=xpO-xp()=xpO)~[1n O]{_Cpp 0"} M- (25)
From the solution of these LMIs, the controller gain is obtained<oy:Mx ~*. Furthermore, the optimal compensation
of the initial condition in the controlle, , is given by§g =& +¢()—&(0 ), where £(07) is the initial condition of
the controller before the compensation with:

o) =[x, T () ()] =-A o A :[Ap__cipK et }; 5= m (26)
Proof: The LMIs (22)-(24) are obtained from the (18)-(20) rewritten:
X :{Xll X1, A:{ Ap o} B{Bp] C :[Cp 0] ve(0)=[ep(0)} eM=[M; My]. (@7)
X12 X22 “Cp O 0 q
The compensation value follows from the fact:
1 =4(0) =4 (=), (28)

Defineé(07), the value of the initial condition of the controller before the compensation, then from (43c) the
compensation value is given by:
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& =(optimal i nitial valig - ( initial valuéeforethe compesatior), that is ,
dlo =41 +&()=4(07), (29)
where&(«) is obtained frome(e) = [x p' () {(oo)]-r =-A"Bry .

3. Compensation of Initial Conditions on Controller with Others Indexes Performance

In this method, the following indices of performance are considered beyond the stability : the speed of response and
restriction of input and output.
3.1 Restriction on Input

Assume that the initial condition of the plant is known. The restric|ti1(n)|| < uis imposed on whole time if the
LMIs :

[ T
1 ox (0)} >0 (30)
| X(0) X
ard )
X “Q } =20 (31)
Mol

are satisfied, (see (Boyd et al., 1994)), wkh=P * e M = KX .

3.2 Restriction on Output

Assume that the initial condition of the plant is known. The restricfig(t)| <A is imposed on whole time if the
LMIs (30) and:

X xcl_. @)
cx AT

are satisfied, (see (Boyd et al., 1994)), wih= P .

3.3 Decay Rate

Consider a candidate Lyapunov functivix(t)) = x"Px and tha¥/ (x(t)) <0, for allx 0. The decay ratg>0, is
obtained if the conditionV(x(t))< -2 (x(t)) (see (Boyd et al., 1994)), is satisfied for any trajectory which is
equivalent to:

AX +XAT -MTBT -BM +2)X <0. (33)
The speed of response is related to the decay rate, ie with the largest Lyapunov exponent. A problem of stable controller

design with constraint on input, output and rate of decay can be defined respectively by:

i) the restriction of input: FindX , satisfying, (13), (30) and (31);
i) the restiction of output: FinK , satisfying, (13), (30) and (32);
iii) decate ratg/ : Find, X , satisfying X >0 and (33).

The problem of controller design with compensation the initial conditions of the controller, which simultaneously
considers the constraints of input, output and decay rate is described below.

3.4 Specification Optimal of Initial Conditions in the Controller with others Indexes Performances

Problem 2: Consider the system described by (9)-(10). Suppose that the reference (gatstep function with
vaue equal tory) is applied int =0: r(t)= T, to t=0,

0 to t<O,
wherer, is a known real constant. Determidg, the compensation i§;(t) in t=0, so that the system is stable,
Hue(t)H <u, y(t)H <A and the speed of the response depaywhere i, A e y are positive real constants. The

solution proposed is presented in the following theorem:
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Theorem 4 Given the matrices and the system (9)-(10), and initial condgiqe) , the Problem 2 has solution when

the following LMIs are feasible:

maximizey
X1 X132 X5 M. M 2'£|
swbject to

T
{Xll Xlz:l > 0 (34)
X12 X22

T
{Un Uzo } -0, (35)
Uiz U2
T
X11 X12 X12Cp
i
X12 X2  Xq11C p |> 0

T T 2
Cp X12 Cpxll A

(36)

1 e &
T
ep(0 X112 Xi2° | >0
§| X12  X22

@7

T T
X11 X12° Mg
X12 Xoo M2T >0
2
Mg Mz u

(38)

where:

_ T Tp T _ T T
U11=X11Ap +ApX11-M1 By =BpMg+2)X13,U12=X12Ap" —CpX11-M2 Bp +2)Xy

T
. - X117 X
Ugp=-X12Cp" =Cp X1p' +2)K90, M=[My My]; K=mx}; X{xﬂ xlz} - (39)
12 X22

Proof: analogous to the proof of theorem 3. From the solution of these LMIs, the controller gain is obtained by:
K =MX ™. Furthermore, the optimal compensation of the initial condition in the contf)leris given by

& =& +&(0)—£(07), whereé (07) is the initial condition of the controller before the compensation .

4. APPLICATIONS EXEMPLES
4.1 Control of an Inverted Pendulum with Optimal Compensation on the Initial Conditions of the Controller
It is considered, as in Teixeira et alli (2002) the system inverted pendulum, the described by equations following
(Ogata,1997):
4 ¢)= 206016(t) - u(t) , (40)
y(t)=05u(t) —0.4059(t) . (41)

To control the position of the cart system with zero error for a step type input is made retroactively to the position signal
(indicating the position of the cart) for the entry, and an integrator is inserted in the path of action ahead as shown in
Figure 2.

r é

Yy YV
<
I
o
x
\
$~<

Figure 2: System of the control inverted pendulum.

Considering the definition of state variablesx@s: 9 ; x, =0; %3 =y; X,=y. Then, based on equations (40)-(41),
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and considering the position of the cart as the system output, are obtained the following equations
Xp(t) =Apxp(t)+Bpu(t), (42)
y(t) =Cp Xp(t), (43)
u(t)=-Kxp®)+K (1), K =[K1 Kz Kz Kgl, (44)
EM=r®-y®)=r)-Cpxpt), (45)
where:
0 100 0
20601 0 0 O -1
p= B = . Cp=[0 0 1 0.
0 001 p 0
- 04095 0 0 O -05

The performance index is described by (14) w@hdiag{100,1,1,1,0.01}and R=0.01. The design problem of
controller with optimal compensation of the initial conditions, using LMIs is: minimzend find X, = X,,", X5,

X0 = X' s My, My, & satisfying  (22), (23) e (24), being:
x (O )=[xp(oj[ 5(0JT=[0 0000 and ep©=xp0)-xpe)=[0 0 -1 0.

From the solution obtained with the software LMISol, one Hasé, and the matrice<,;, X;,, X,,, M;, M, that
sdve the LMIs . The solution is given:

K=Mx"1=[- 1230- 2067- 1144 - 1800 129, § =-22597 , A= 157488,

Therefore,K = [—

12346- 2067- 1144- 180] K, =- 12971 So,

0 1 0 0 0
) Ap _ BpK BpKI - 1028034 20670G- 11442- 180065 12971 o
A o |7| ° 0 0 1 o | B= | (46)
P 612117 103350 57221 90033 - 06486
0 0 -1 0 0

e(w)=-A"Brg=[ 0 0 1 0 88298 e¢ ¢ )=8.8228.
Since, (0" )=0, we obtained from (29), the optimal compensation initial conditions of the controller as:

Slo =4 +<$ € )¢ (0 )=6.5631
The theorem 3 solved Problem 1, it providing simultaneously the gairfisub-optimal”’, K =[K -K,] and &
obtain the optimal compensation of the controllég, g =& +¢&(0)-£&(0) . Note that this optimal value depends
of the K because &(«) = -A™1Br, With matricesA e B of the equation (46). Fig. 3 presents the ouggt)tand the
control lawu(t) of the feedback system with the initial conditions compensation on the controller, when a unit step input
is applied. The performance index was obtainge2.0984.

12

4

saida da plants, yit)
o oo
ry o m

a
[

0z

] s 10 15 20 25 a0 35 a0
tempo(s)

Figure 3:Unit step response for the inverted pendulum system with optimum compensation of the initial conditions.

4.2 Control of an Inverted Pendulum with Compensation for Initial Conditions in the Controller with
Restriction in the Input, Output and in the Rate of Decay
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We considered the problem of inverted pendulum described by equations (42) to (45). The gains of the controller were
designed so thatlaximize y and find the symmetric matriceX 11, X415, X5, and matricesM,;, M,, ¢
satisfying (34), (35), (36), (37), (38), with=14, A=3 e x,=[0 0 0 0.
When y =1.1= ymax. We obtain with software LMISol, the matrices that verify the LMIs above :
06329- 16757 05320 - 15064 01874

- 16757 75055 03587 - 04847 02493
X = 05320 03587 83880 — 92799 61487 |» M =[- 17676 49742 - 113922 350689 4.6893 .

- 15064 04847 92799 151079 - 52064
01874 02493 61487 - 52064 55277

Therefore, are obtaine® =mMx 1=[- 613069 132682 106459~ 8950%.2393, & = - 15497. Figure 4 presents
the outputy(t) and the control law(t) of the feedback system, to a unit step input. It can be verified that
|y €)=1004<2 e|u (= 26569< 4.

12 3

1

=
@

saida da planta, 1)
= o o
[ = >

o

22 3
o 2 4 6 8 1 12 14 18 18 20 o 2 4 6 8 10 12 14 16 18 20
tempo(s) tempo(s)

Figure 4: Unit step response and control law for inverted pendulum system with compensation of the initial
conditions on the controller, restrictions on output and input and maximum rate of decay.

4.3 Optimal Compensation of Initial Conditions in a Reactor Controller with Agitation (RA)

Consider that in an (RA) with a liquid phase isothermal and multicomponent chemicals react according to the nonlinear
dynamic model described by (Scarratakt 2000):

%) =1-(1+ Dy, )% (V) +Day 80 (47)

(= Dy, %()=%()~(Da, + Doy JB(O+u) 48)

a(1) = Dag (1) ~xa(t), (49)

y(t) = x3(t) , (50)
wherex; (t)> 0 ,i=123 to t=0 and represented :

X (t): normalized concentratiorC,/Cpg of the specie A,
Xo(t) : normalized concentratiorCg/Cpg  Of the specie B,
X3(t): normalized concentratiorCc /Cap  of the specie C,
Car : steady regime of the specie A (mof)nu(t) : control signal,
and parametersg= 07737, D, =30, Dy, =05, Dy, =10. (51)
The system (47)-(50) has the following equilibrium p({irxg,ue ):

xe=| 03467 08796 07737, ug(t)=1. (52)
Want to design a controller so that the output reaches and remains in the valué737 and that:
025X ()< 04; 08=<x,{)<11l; 05sx3({)<08. (53)

Then the system (47)-(50) will be described in other coordinates to that the linearized system has no transmission zeros
at the origin. Set

Xo(t) =X3(1) (54)
Uy () =U() =X (1) . (55)



ABCM Symposium Series in Mechatronics - Vol. 5 Section Il — Control Systems
Copyright © 2012 by ABCM Page 333

Now,

“xOF2 3(Xx(r=2 x( 1[ R, X0~ x0-(m, + o) B+ L(t)] =25(9 [Dy %(0~(Da, + Day JRo(0+un )] (56)
Therefore from (54) — (55), the system (47) — (50) can be represented by:

5 (t) =1-(1+ Dy )3 (1) + Dy, Xo(0). (57)
S(1=2 0, 5(0y5e(0-2%() Dy, + D, J (0+ 24T uy ©), (58)
3g(1) = Doy Xa(t) —X3(t) (59)
y(t) =x3(t) . (60)
Considering,
A t)=%¢t)-025 e Auyft)» Dy, 025+uy ®) (61)
We obtain from (57):
D% ()==(1+ Dy Jq(t)+ Dy, %o (1) - (62)
Finally the nonlinear system (47) - (50) in the varialdegt) , X, (t) e X, (t) is described as:
A% ()==(L1+ Dy ) (1) + Doy X (0) (63)
500=2 0, VS (DAxX(9-24%() Dy, * Doy Jo (0+2/F [ duy ) (64)
3a(1)= Dag ()= X3(1) (65)
y(t) =x3(t). (66)
Therefore of (54)-(60) and considering the values of the parameters adII},qtedDa2 e Dy, in (51):
() |7 6% (1) ~3yRo) 0 || Xo(t) | +| 2% (1) |Aun (1) (67)
X3(t) 0 1 -1 X3(t) 0

From the equations (54)—(55), (61), (52) and definmgx(t)=[Ax1(t) Xo(t) X3 (t)], we obtain that equilibrium
point of nonlinear system (671{3 px(t),Au N):(A pxe,Aue) , IS

A pxe=[ 0096 07737 07737, Aug = 08704. (68)
From (68), (54), (55) e (60):
&Ax { x 015; 064< X, { x 121;05< x3()< 08 (69)

Locally, the non-linear system (67) can be approximated by truncation of the representation by the Taylor series
expansion around the equilibrium point:

-4 05 0
. . _ . _ T
ApX(t)= ApAx(1)+ByAuy being A, =| 52776 - 26413 0 |, B,=[0 175 0] .
0 1 -1
To design the controller so that the output of the system remains in theryal@e7737 is considered the augmented
system:
{Apxa)z A pX (1) + B pAuy

E(t) =r(t) - Cph pX(1)

The performance index of the system is described in (14) b@idjag{100,1,0,0.01}and R=0.01.The design of the
controller to compensation the initial conditions, using LMIs, is: minirhiznd find

X11= XllT y Xlz, X22 = X22T, Mly MZ’ §C| SatISfyIng (22), (23) e (24), W|th

(70)

.
x (O ):[xp 0) €& (o}) =[0 064 05 0", e, @x,0(Ix, ([~ 00967~ 01337 - 02737" .

The software LMISol provided A, § and the matrice;;, X,,, X,,, M;, M, that solve the LMIs above . The

sdution obtained wa =MX =] 135763 15615 14874 - 04209 ;& =-02336, b, and so
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-4 050 0 0
Az Ap - BpK BK| _|— 186518- 53727- 26029 07354 B = 0
| -Cp 07| o 1 -1 o [ |1
0 0 -1 0

e(w) =—ABr, =[ 00967 07737 07737 108444", & ¢ »= 108446
Therefore, consideringso™)=0, from (29), the optimum compensation of the initial conditions of the controller is :

o =& +¢& € & (0 = 106110. Figure 5 presents the output y(t) and the control law u(t) of the feedback system,
to a input step of amplitudg = 07737, with compensation of the initial condition, considerig o J0 064 05| .
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Figure 5: Step response of amplitudg0.7737 , and of the control signal of the system ( RA) with optimum
compensation of the initial condition , considerig(@)=[0 0.64 0.5].

5. CONCLUSIONS

This article presents methods for optimal updating of the initial conditions on the controller, in the case
considered the integral type, based on LMIs. The first method is the design of optimal quadratic regulators, in which the
controller is designed to minimize the performance index. This is an alternative method (Te¢iaéir2006) to update
the initial conditions because it takes an approximate optimal value of the update. The method finds the exact value was
presented in Teixeirat al., (2002). The second method is presented when we consider further restrictions on the
project, for example, restrictions on output and input constraints, rate of decay. To our knowledge, the optimal updating
of the initial conditions with the use of LMIs, while other restrictions are considered had not been made. This upgrade
method using LMIs, provides a way to study the update of the initial conditions for nonlinear systems.
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