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Abstract. Typically control systems are designed aiming at the specification of parameters of the controller that is 
usually described by a differential equation. In most cases, the controller is artificially constructed and you can also 
update their initial conditions. In the design of optimal quadratic regulators to update initial conditions of the optimal 
controller can significantly improve the performance of the controlled system. In this work is also considered other 
constraints on the controller design, for example, restrictions on output and entry and also restrictions on the decay 
rate. A design procedure formulated in the context of linear matrix inequalities (LMIs) to update the initial conditions 
in PI controllers considering also other constraints is presented. The applications of the proposed method for 
controlling an inverted pendulum and the control of a chemical reaction prove its effectiveness. 
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1. INTRODUCTION 

In the design of automatic control systems, the goal is to obtain a control law that supplies the inputs of a process, so 
that the system has an acceptable dynamic performance. In the vast control literature, there are several results on pole 
allocation in control system design. However, the correct location of the zeros, for instance of a transfer function, can 
also be indispensable to obtain a good transient response. It is possible to allocate zeros of transfer functions, by using 
available dynamic feedback structures (Kienitz and Grubel, 2000). In many aerospace control systems, which request 
high precision, the design of optimal control has been considered a very important subject. For instance, a method that 
has been very much used is optimal control based on the minimization of quadratic performance indexes. In Ogata 
(1997), it was observed that the initial condition of a controlled system influences the quadratic performance index.  

Many servo control schemes in mechatronics systems, such as hard disk drives, must meet the specifications of both 
fast movement and precise positioning on a known reference. To meet this requirement, one servo structure for fast 
access and other for precise positioning are designed. Then, the control is switched between these two servo structures. 
This type of servo system is called Variable Structure Control (VSC). Each servo mode can be optimally designed by 
the minimization of its desired performance index. Therefore, the remaining problem is how to switch from one mode 
to other. In Yamaguchi et al., (1996), is proposed the method called Initial Value Compensation (IVC) to improve the 
performance of the transient response after switching. This method was also used with the intention of reducing the 
stabilization time of the controlled system (Johansson, 2000; Hirose et al., 2011). In these references, the design goal 
was to minimize a quadratic performance index (denominated IVC I), with the reference signals equal to zero. The 
plants and controllers in these researches are discrete-time systems. In Teixeira et al., 2002, it is considered a controlled 
system, consisting of the plant and one or more dynamic controllers, continuous in the time, with a step reference 
signal, and it is shown analytically that the initial conditions in the controller can be modified, improving the transient 
response of the system, according to a quadratic index. A modification of the initial conditions in the controller can be 
interpreted as a change in the positioning of the zeros of the system. In Teixeira et al., 2006, the authors present an 
alternative method for optimum compensation of the initial conditions on the controller, in the case considered the 
integral type, based on LMIs.  This work is also considered other constraints on the controller design, for example, 
restrictions on exit and entry and restrictions on the decay rate.  A  LMI-based design procedure to update the initial 
conditions in PI controllers considering also other constraints is presented. This article is organized as follows. In the 
next section is revised the first method proposed in Teixeira et al. (2006) for the optimal specification of initial 
conditions on the controller using LMIs, the design of optimal quadratic regulators to update the initial conditions on 
the controller. In Section 3, we approach the update on the controller when considering further restrictions on the 
controller design, such as decay rate and restrictions on exit and entry. In Section 4, we apply the methods presented in 
the control of an inverted pendulum and the control of a chemical reaction. Section 5 presents conclusions. 

2. STATEMENT OF THE PROBLEM  

         Given the system shown in Figure 1, will design both a matrix [ ]IKKK −=ˆ  and the optimal initial condition,  

 loξ , the controller in the case considered the integral type: 

)()()( I tKt-tu p ξ+= Kx .    (1) 
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Figure 1 - Closed-loop System. 

The system is described in state variables as: 

)()()( tut t ppp BxAx +=& ,   (2) 

),()( t ty pp xC=    (3) 

),(-)()( tytr te =   (4) 

),(-)()()( t tr te t ξ pp xC==&   (5) 

being that  )(tpx ℜn  is the state vector, )t(u ∈ ℜ  is the input vector and given in (1), )(te ∈ ℜ , )(te  is tracking error 

the vector error and r (t) is the reference, pA ∈ ℜnxn , pB ∈ ℜnx1 and pC ∈ ℜ1xn  are constant matrices. 

From equations (2)-(5) can describe the dynamics of the system by: 
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being that 0  denotes a vector with all elements null and size. 1×n .  
Defining            

)()()();()(ξ)();()()( ∞−=∞−=∞−= ututuξt tξtt eeppe xxx .         (7)                                            

Now, defining the vector-error of size (n +1) by  

[ ]TT )()()( e ttte eξx= .  (8) 

Thus, the dynamics of vector-error is described by: 

)()()( tu t t eBeAe +=& ,                                                                                                                                                         (9) 

being: 
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By replacing (9) in (8):                                       

)( )ˆ-()( t t eKBAe =&    (11) 

2.1 Analysis of the Lyapunov Stability 

In this case, the study of method of Lyapunov to analyze the stability of the closed-loop system (11) is 
accomplished through the study of the following LMIs: 

,0,0    )ˆ()ˆ( T ><−+− PPKBAKBAP          (12) 

Thus, of (12) doing a manipulation, multiplying both sides of (12) per P-1, and defining  1−= PX  and 
XKPKM  ˆ ˆ 1 == −  we have: 

0  0  , TTT >−+ <− XBMBMAXXA ,    (13) 

being TXX = , which now  being are LMIs.  If these LMIs are feasible, ie presenting at least one solution X and M, 
then the controller gain is given by 1 ˆ −= XMK . In the design of optimal control is desired to minimize a performance 
index. Tanaka and Wang (2001), design an optimal fuzzy controller for nonlinear systems by solving an optimization 
problem that minimizes the upper bound of a quadratic performance index. Then, this idea is applied to design optimal 
control for linear systems. 
 
2.2  Performance Index 

The gain matrix of state feedback controller is obtained by [ ]IK−= KK̂ , in order to minimize the upper limit of the 

index: 
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eQe   (14) 

being  that Q  is a real symmetric positive definite matrix and  R  is a real matrix symmetric positive definite or 0=R . 
The following theorem provides an upper bound to1J . 
 
Theorem 1: The system (8) - (9) can be stabilized by controller (10), if there is a symmetric positive definite matrix 
satisfying: 

 0,       
TTTT  <









−












 −+−−+
M

X

0

0Q
MXBMBMAXXA

R
  (15) 

0    >X . (16) 

Moreover, the performance index satisfies 

(0)  (0)   )( T
1 ePe<euJ ,    (17) 

being    1−= XP  e PMK  ˆ = . 
Proof: See Teixeira et al. (2006). 

Inequality (15) can be transformed into LMI. The Schur complement (Boyd et al., 1994) converts a class of nonlinear 
inequalities in linear matrix inequalities.  Following is presented a controller design “sub-optimal” based on LMIs, 
which stabilizes the system and minimizes the upper bound of performance index based on the result of Theorem 1. 

Theorem 2: Given matrices A  and B of system (9)-(10), and the initial condition(0)e , then TXX =  and M  
matrices that allow determining the feedback gain that stabilizes the system and minimizes the upper bound of 
performance index 1J  can be obtained by solving the following LMIs: 
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Of the solution of LMIs, the feedback gain can be obtained by the expression: 1ˆ −= MXK . 

Then the performance index satisfies < )(1 euJ )0(  )0( T ePe λ< , with 1−= PX . 
Proof: See Teixeira et al. (2006). 
 
Remark 1: From the definition in (7) e (8): 
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Remark 2: If the plant (2)-(3) has no transmission zeros at the origin, then (more detail, see Teixeira et al., 2006), 0x  
is known and it is not a function of K̂  or lξ . Therefore lξ  can be arbitrary chosen and offers a new degree of freedom 
in the design of the controller and the value can be chosen conveniently. So is the choice of a new degree of freedom in 
controller design. The problem of optimal controller design, to update the initial conditions of the controller, using 
LMIs defined below. 

2.3 Specification of the Optimal Compensation of the Initial Conditions of the Controller 

Consider the following problem: 
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Problem 1: Consider the system described by (9)-(10). Suppose that the reference input )(tr (a step function with value 

equal to 0r ) is applied in 0=t :     =)(tr


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where 0r  is a known real constant. Determineloξ , the compensation in )(tlξ  in 0=t , such that there exists 

0>= TPP , for the solution of the following LMIs: 

(i) 0;    )ˆ()ˆ( T <−+− PKBAKBAP  

(ii) the upper bound, (0)(0)T Pee , of the performance function below is minimized:  

( )dtR uuuJ eee ∫
+∞ +=
0

TT
1 )( Qee , 

where Q is a symmetric  and real positive definite (or semi positive definite) matrix and R  is a real constant, and 
0≥R .  

The solution proposed is shown in Theorem 3 below:  
 
Theorem 3: Given the matrices and the system (9)-(10), and initial condition )0(pe , the Problem 1 has solution when 

the following LMIs are feasible:  
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where: 
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From the solution of these LMIs, the controller gain is obtained by: 1ˆ −= MXK . Furthermore, the optimal compensation 
of the initial condition in the controller,loξ , is given by )0()( −−∞+= ξξξξ llo , where )0( −ξ  is the initial condition of 
the controller before the compensation with: 
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  Proof: The LMIs (22)-(24) are obtained from the (18)-(20) rewritten: 
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The compensation value follows from the fact: 

   )((0) ∞−= ξξξl ,    (28) 

Define )(0−ξ , the value of the initial condition of the controller before the compensation, then from (43c) the 
compensation value is given by: 
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                                               ),   (-) sationthe compenbeforevalueinitialuenitial val(optimal ilo =ξ that is , 

 )(0)( −−∞+= ξξξξ llo ,    (29) 

where )∞(ξ  is obtained from  [ ] 0
1TT ˆˆ)()()( rp BAxe −−=∞∞=∞ ξ   . 

 
3.  Compensation of  Initial Conditions on Controller with Others  Indexes Performance   

In this method, the following indices of performance  are considered beyond the stability : the speed of response and  

restriction of input and output. 
 
3.1  Restriction on Input 

Assume that the initial condition of the plant is known. The restriction µ<)(tu is imposed on  whole time if  the  

LMIs : 
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 are satisfied, (see (Boyd et al., 1994)), with 1−= PX  e XKM ˆ= . 
 
3.2  Restriction on Output 

Assume that the initial condition of the plant is known. The restriction λ<)(ty  is imposed on  whole time if  the  

LMIs  (30) and: 
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are satisfied, (see (Boyd et al., 1994)), with 1−= PX . 
 
3.3  Decay Rate 

Consider a candidate Lyapunov function Pxxx T))(( =tV  and that 0))(( <txV& , for all 0x ≠ . The decay rate 0>γ , is 
obtained if the condition ))((2))(( tVtV xx γ−≤&  (see (Boyd et al., 1994)), is satisfied for any trajectory which is 
equivalent to: 

  02TT <+−−+ XBMBMXAAX γT .     (33) 

The speed of response is related to the decay rate, ie with the largest Lyapunov exponent. A problem of stable controller 
design with constraint on input, output and rate of decay can be defined respectively by:  

i) the restriction of input: Find X , satisfying, (13), (30) and  (31); 
ii)  the restiction of output: Find X , satisfying, (13), (30) and  (32); 
iii)  decate rate γ : Find, X , satisfying 0>X  and (33). 

The problem of controller design with compensation the initial conditions of the controller, which simultaneously 
considers the constraints of input, output and decay rate  is described below. 
 

3.4  Specification Optimal of Initial Conditions in the Controller with others Indexes Performances 

Problem 2:  Consider the system described by (9)-(10). Suppose that the reference input )(tr (a step function with 
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where 0r   is a known real constant. Determine loξ , the compensation in )(tlξ  in 0=t , so that the system is stable, 

µ<)(tue , λ<)(ty   and the speed of the response decay γ , where µ , λ  e γ  are positive real constants. The 

solution proposed is presented in the following theorem: 
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Theorem 4: Given the matrices and the system (9)-(10), and initial condition )0(pe , the Problem 2 has solution when 
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            Proof : analogous to the proof of theorem 3. From the solution of these LMIs, the controller gain is obtained by: 
1ˆ −= MXK . Furthermore, the optimal compensation of the initial condition in the controller,loξ , is given by 

)0()( −−∞+= ξξξξ llo , where )0( −ξ  is the initial condition of the controller before the compensation .  
 

4.    APPLICATIONS EXEMPLES  

            4.1  Control of an Inverted Pendulum with Optimal Compensation on the Initial Conditions of the Controller 

 It is considered, as in Teixeira et alli (2002) the  system inverted pendulum, the described by equations following 
(Ogata,1997): 

   )()(60120)( tut .tθ −= θ&& , (40)     

)(50)( tu.ty =&& )( 0.405 tθ− .  (41) 

To control the position of the cart system with zero error for a step type input is made retroactively to the position signal 
(indicating the position of the cart) for the entry, and an integrator is inserted in the path of action ahead as shown in 
Figure 2.  
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Figure 2: System of the control inverted pendulum. 

Considering the definition of state variables as: θx =1 ; θx &=2 ; yx =3 ; yx &=4 . Then, based on equations (40)-(41), 
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and considering the position of the cart as the system output, are obtained the following equations 

)()()( t ut t pppp BxAx +=& ,                                                         (42)                  

),()( t ty pp xC=     (43)               
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The performance index is described by (14) with Q=diag{100,1,1,1,0.01} and R=0.01. The design problem of  
controller with optimal compensation of the initial conditions, using LMIs is: minimize λ  and find T
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From the solution obtained with the software LMISol, one has λ , lξ  and the matrices 11X , 12X , 22X , 1M , 2M   that 

solve the LMIs . The solution is given:              
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


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
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−

=
0

B
C

BKBA
A

p

Ippp K
  (46) 

[ ] 8.8228)(   e 8228.80100ˆˆ)( T
0

1 =∞=−=∞ − ξre BA . 

Since, 0)(0 =−ξ ,  we obtained from (29), the optimal compensation initial conditions of the controller as: 

6.5631)(0)( =−∞+= −ξξξξ llo . 

The theorem 3 solved  Problem 1,  it providing   simultaneously   the gain  K̂ , “sub-optimal”, ]K  [ˆ
I−= KK  and lξ  

obtain   the optimal compensation of the controller , ,loξ  )0()( −−∞+= ξξξξ llo . Note that this optimal value depends 

of the K̂  because, 0
ˆˆ)( 1 rBA−−=∞ξ  with matrices Â  e B̂  of the equation (46). Fig. 3 presents the output y(t) and the 

control law u(t) of the feedback system with the initial conditions compensation on the controller, when a unit step input 

is applied. The performance index was obtained: J1=2.0984. 

 
Figure 3: Unit step response for the inverted pendulum system with optimum compensation of the initial conditions. 

 
4.2 Control of an Inverted Pendulum with Compensation for Initial Conditions in the Controller with 

Restriction  in the Input, Output and in the Rate of Decay 
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We considered the problem of inverted pendulum described by equations (42) to (45). The gains of the controller were  
designed  so that: Maximize  γ  and find  the  symmetric matrices 22 1211    ,  , XXX  and matrices 1M , 2M , lξ  

satisfying  (34), (35), (36), (37), (38), with 14=µ , 3=λ  e [ ]T0000=px . 

When max1.1 γγ == , we obtain with  software LMISol, the matrices that  verify    the LMIs above : 























−
−−−−

−
−−
−−

=

5277.52064.51487.62493.01874.0

2064.51079.152799.94847.05064.1

1487.62799.93880.83587.05320.0

2493.04847.03587.05055.76757.1

1874.05064.15320.06757.16329.0

X , [ ]   4.6893-   0689.351139229742.47676.1 −−=M .  

Therefore,  are obtained  [ ], 5.2393  9509.86459.102682.133069.61ˆ 1 −−−−== −MXK 5497.1−=lξ . Figure 4 presents 

the output y(t) and the control law u(t) of the feedback system, to a unit step input. It can be verified that 
λ<= 004.1)(ty  e µ<= 6569.2)(tu . 

 
Figure 4: Unit step  response  and  control law  for inverted pendulum system with   compensation of the initial 

conditions on the controller, restrictions on output  and input and maximum rate of decay. 

4.3 Optimal Compensation of Initial Conditions in a Reactor Controller with Agitation (RA) 

Consider that in an (RA) with a liquid phase isothermal and multicomponent chemicals react according to the nonlinear 
dynamic model described by (Scarratt et al., 2000): 

( ) )()(11)( 2
211 21

txDtxDtx aa ++−=& , (47)                        

( ) )()()()()( 2
2212 321

tutxDDtxtxDtx aaa ++−−=&  (48) 

)()()( 3
2
23 3

txtxDtx a −=& , (49)                                      

)()( 3 txty = ,  (50)  

where ( ) 3,2,1,0 => itxi    to  0≥t  and represented : 

:)(1 tx  normalized concentration  AFA CC /  of the specie A, 

:)(2 tx  normalized concentration  AFB CC /   of the specie B, 

:)(3 tx  normalized concentration  AFC CC /   of the specie C, 

                                               AFC :  steady regime of the specie A (mol.m-1), )(tu : control signal, 

                                       and   parameters :    7737.00 =r , 0.3
1

=aD , 5.0
2

=aD , 0.1
3

=aD .                                  (51)                                             

The system (47)-(50) has the following equilibrium point ( )ee ux , :  

[ ]7737.08796.03467.0=ex , 1)( =tue . (52)                              

Want to design a controller so that the output reaches and remains in the value r0 = 0.7737 and that: 

4.0)(25.0 1 ≤≤ tx ;   1.1)(8.0 2 ≤≤ tx ;  8.0)(5.0 3 ≤≤ tx . (53)                      

Then the system (47)-(50) will be described in other coordinates to that the linearized system has no transmission zeros 
at the origin. Set  

)()(~ 2
22 txtx = ,  (54) 

)()()( 2 txtutuN −= .   (55) 
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Now, 

( )[ ] ( )[ ])()(~)()(2)()()()()(2)()(2)(~
212

2
2212222 321321

tutxDDtxDtxtutxDDtxtxDtxtxtxtx Naaaaaa ++−=++−−== &&  (56)                                                           

Therefore from   (54) – (55), the system (47) – (50) can be represented by: 

( ) )(~)(11)( 211 21
txDtxDtx aa ++−=& ,   (57)                                                     

( ) ),()(~2)(~)(2)(~)(2)(~
222212 321

tutxtxDDtxtxtxDtx Naaa ++−=&  (58) 

)()(~)( 323 3
txtxDtx a −=& , (59)                                      

)()( 3 txty = .  (60)                                             

Considering, 

25.0)()( 11 −=∆ txtx      e      )(25.0)(
1

tuDtu NaN +=∆  (61) 

We obtain from  (57): 

( ) )(~)(1)( 211 21
txDtxDtx aa +∆+−=∆& .  (62) 

Finally the nonlinear system (47) - (50) in the variables )(1 tx∆ , )(~
2 tx  e )(3 tx  is described as: 

( ) )(~)(1)( 2211 1
txDtxDtx aa +∆+−=∆&    (63) 

( ) ( ) ,)(~2)(~)(~2)()(~2)(~
22322122 1

tutxtxDDtxtxtxDtx Naaa ∆++−∆=&  (64) 

,)()(~)( 3233 txtxDtx a −=&  (65)                                              

.)()( 3 txty =   (66) 

Therefore of (54)-(60) and considering the values of the parameters adopted 
1aD ,  

2aD  e 
3aD  in (51): 
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


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−
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






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



∆

&

&

&

. (67) 

From the equations (54)–(55), (61), (52) and defining [ ])()(~)()( 321 txtxtxtp ∆=∆ x , we obtain that equilibrium 

point of nonlinear system (67), ( )( ) ( )eepNp uutx ∆∆=∆∆ ,, x  , is 

[ ]7737.07737.0096.0=∆ epx ,             8704.0=∆ eu .  (68) 

From (68), (54), (55) e (60): 

  8.0)(5.0;21.1)(~64.0;15.0)(0 321 ≤≤≤≤≤∆≤ txtxtx    (69)                          

Locally, the non-linear system (67) can be approximated by truncation of the representation by the Taylor series 
expansion around the equilibrium point: 

   Npppp utt ∆+∆=∆ BxAx )()(&   being     ;

110

06413.22776.5

05.04

















−
−

−
=pA    [ ]T075.10=pB  .                   

To design the controller so that the output of the system remains in the value r0 = 0.7737 is considered the augmented 
system: 

     






∆−=

∆+∆=∆

)()()(

)()(

ttrt

utt

pp

Npppp

xCξ

BxAx

&

&

     (70) 

The performance index of the system is described in (14) being: Q=diag{100,1,0,0.01} and R=0.01. The design of the 
controller to compensation  the initial conditions, using LMIs, is: minimize λ  and find 

T
1111 XX = , 12X , T

2222 XX = , 1M , 2M , lξ   satisfying   (22), (23) e (24), with: 

[ ] [ ]TTT 05.064.00)(0(0))0( ==− -
p ξxx , [ ]T2737.01337.00967.0)()()0( −−−=∞−= ppp x0xe . 

The software LMISol  provided λ , lξ  and  the matrices 11X , 12X , 22X , 1M , 2M   that solve the LMIs above . The 

solution obtained  was: [ ]4202.04874.15615.15763.13ˆ 1 −== −MXK  ; 2336.0−=lξ , b, and  so 
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ˆ 0

B
C

BKBA
A

p

Ipp K
,  

[ ]T0
1 8446.107737.07737.00967.0ˆˆ)( =−=∞ − rBAe , .8446.10)( =∞ξ  

Therefore, considering  0)(0 =−ξ , from (29), the optimum compensation of the initial conditions of the controller is : 

6110.10)(0)( =−−∞+= ξξξξ llo . Figure 5 presents the output y(t) and the control law u(t) of the feedback system, 

to a  input step of amplitude 7737.00 =r , with  compensation of the initial condition, considering [ ]T506400=0 ..)(px .   

                       

Figure 5: Step response of amplitude  r0=0.7737 ,  and of the control signal of the system ( RA)  with optimum 
                  compensation of the initial condition , considering  xp(0)=[0  0.64  0.5]T.  

5. CONCLUSIONS 

This article presents methods for optimal updating of the initial conditions on the controller, in the case 
considered the integral type, based on LMIs. The first method is the design of optimal quadratic regulators, in which the 
controller is designed to minimize the performance index. This is an alternative method (Teixeira et al., 2006) to update 
the initial conditions because it takes an approximate optimal value of the update. The method finds the exact value was 
presented in Teixeira et al., (2002). The second method is presented when we consider further restrictions on the 
project, for example, restrictions on output and input constraints, rate of decay. To our knowledge, the optimal updating 
of the initial conditions with the use of LMIs, while other restrictions are considered had not been made. This upgrade 
method using LMIs, provides a way to study the update of the initial conditions for nonlinear systems. 
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