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Abstract. Position and attitude estimation is vital for vertical take-off and landing - unmanned aerial vehicle (VTOL-UAV)
that can be executed by integrating the output of gyros, accelerometers and magnetometers with respectively gravity
and local magnetic field vectors. For this purpose, a Kalman filter with different variant as extended, unscented and
complementary has been largely used in the literature. Another technique, vision data to navigate an unknown, indoor,
GPS-denied environment with optical flow or visual servo based on image or position was used. Without external sensing,
an estimation system that relies only on integrating inertial data will have rapidly drifting position estimates.VTOL-UAVs
are stringently weight constrained, leaving little margin for additional sensors beyond the mission payload.
The aim of this paper is to present a realtime sensor fusion scheme based on nonlinear filtering, for hexarotorUAV
to localization problem. The absolute attitude estimation use the extended Kalman filter based on quaternion to avoid
singularities. Results obtained in realtime system to the hexarotorUAV shows the better attitude performance.
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1. INTRODUCTION

Sensor system with combined measurements such as rate gyros, inclinometers and accelerometers are generally used
for attitude determination that is an essential task for an Unmanned Aerial Vehicle (UAV ) (Earl and D’Andrea, 2004;
Suh et al., 2010; Hallet al., 2008; Xueet al., 2009; Bae and Kim, 2010). It is possible to use a rate gyro to derive
attitudes by integrating the rigid body kinematic equations while accelerometers can provide gravity direction. With high
quality gyros and good initial values these estimates can be very accurate over long periods of time. However, if the
aim is an autonomous unmanned aerial vehicle then the attitude estimate should be reliable over an infinite time scale.
In contrast, accelerometers signals need not be integrated since they provide direct values of tilt angles. Unfortunately,
outputs of accelerometers also are sensitive to translational accelerations and should only be used during phases of low
accelerations. To provide an absolute reference of the attitude, inclinometers and accelerometers which relate the body
to the gravity vector can be used. There is a large literature on attitude filtering techniques, most of the advanced filter
techniques (particle filtering, etc.) are computationally demanding and unsuitable for the small scale embedded processors
in UAV systems (Lim and Hong, 2010; Yafei and Jianguo, 2010).

Two methods that are commonly employed are extended Kalman filtering (EKF ) (Thrunet al., 2006) or some form
of constant gain state observer, often termed a complementary filter due to its frequency filtering properties for linear
systems (Eustonet al., 2008; Netoet al., 2009). TheEKF has been studied for a range of aerospace applications and
is known to have an unpredictable behavior even though they often can be used successfully. Attitude estimation via
different ensembles of the above mentioned sensors has been studied in many works (Choukrounet al., 2006). Such filters,
however, have proved difficult to apply robustly (Edwanet al., 2011). In practice, many applications use simple linear
single-input single-output complementary filters. Earl and D’Andrea (2004) use a decomposition approach to develop a
real-time filter that estimates the attitude of a small four rotor helicopter. The filter uses measurements from a three axes
gyro system and an off-board computer vision system. In Alarcónet al. (2009) present an experimental evaluation of an
attitude estimation algorithm based on anEKF and a minimum squared error criterion based sensor fusion procedure.

Suhet al.(2010) have proposed a smoother for an attitude estimation problem using inertial and magnetic sensors. The
smoother consists of an indirect Kalman filter used as a forward and a backward filter, which is one of standard smoother
structures. A quaternion is used to represent attitude. In this kind of attitude estimation problem deal with the external
acceleration as a number of segments based on accelerometer norm values. In the recent works, a variety of analysis
approaches were used to determine the benefits of maneuvering, experiments were used to evaluate the effects of thrust
acceleration and changes in pitch attitude on in-flightIMU alignment, axial and lateral maneuvers to evaluate the effects
of these maneuvers on in-flightIMU alignment.

In this paper we will provide a solution to fusing data from a three axes rate gyro, a three axes accelerometer and a
three axes magnetometer that will provide stable estimates the tracking position of hexarotor micro aerial vehicle. The
inertial measurement unitIMU is used as the sensor in this work is a low-cost and small size sensor suitable to attach
to the body of hexarotor. TheIMU comprises orthogonal accelerometers, gyroscopes and magnetometers aligned on
the three axes to estimate the position, velocity and attitude with respect to the environment. The paper is organized as
follows: Section 2 describes a background of tracking methodology. The experimental set to determine the hexarotor’s
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Figure 1. Micro-aerial vehicle inUFRN.

attitude is exposed in section 3, including its analysis and discussion. Section 4 provides the conclusion and future works.

2. METHODOLOGY

The flying vehicle we have built is a three-coaxial-rotor helicopter, also called hexarotor depicted in figure 1(a), consist
of three rigid axes that are equidistant from its center of gravity. The six rotors are arranged as three counter-rotating co-
axial pairs without gears installed on each rotor axis. The co-axial layout doubles the thrust without increasing the size
of the footprint, and naturally eliminates loss of efficiency due to torque compensation. An embedded system with power
supply and additional electronics system are mounted at its center of gravity to localization and navigation tasks (Sanca
et al., 2010a,b). In the next subsections are developed the attitude estimation using the sensors independently and finally,
the technique used to fuse all data producing the better estimation.

2.1 Atitude estimation based on acelerometers measurements

The measurement of the Earth’s gravity vector, by means of the three accelerometers that compose the inertial mea-
surement unit, is used to generate the first estimate of the hexarotor’s attitude, considering only pitch (θ) and roll (φ)
angles. These sensors are mounted along three orthogonal axes. We also assume the existence of a frame fixed to the
Earth’s plane, usually know as north, east and down (NED).

We know from the kinematic principles of rigid bodies that if we consider theIMU frame fixed to the hexarotor’s
body, the acceleration experienced by a point described by a vector~ra in relation to the hexarotor’s center of mass (CM ),
and fixed to the hexarotor’s body is given by~aideal = ~aCM + ~α ×~ra + ~ω × (~ω ×~ra), where,~aideal represent the ideal
measured accelerations which include the acceleration of the hexarotor’s axes at the center of mass~aCM, ~ω are body-
fixed angular rates and~α are body-fixed angular accelerations. The characteristic of the accelerometer measurement
suffer uncertain parameters, such as gaussian white noise~anoise and a slowly varying bias~abias involved in the process
due to the lack of orthogonality among the sensors. The measured accelerations contain error sources are defined as
~ameas = ~aideal × ASFCC + ~abias + ~anoise, whereASFCC is a 3−by−3 matrix of scaling factors on the diagonal and
misalignment terms in the nondiagonal.

If we consider the use of a three axial sensor to measure this vector, we will also observe the effect of the gravity
acceleration of the Earth. In general, this effect is subtracted from the final result, in order to simplify the use of the
IMU data. The accelerometers do not measure accelerations directly, but rather the external specific forcef

b. Both linear
accelerations~ae

ideal
and the Earth’s gravitational field contribute to the specific force. The equation 1 represents the values

measured by the sensor. In this arrangement, it is possible to represent the gravity acceleration vector as~ge = [0, 0, g0]
T,

which is constant in relation to the Earth’s frame, and whose value is approximatelyg0 = 9.78m/s2.

~aIMU = f
b = R

be(φ, θ, ψ)(~ae
ideal − ~ge) + ~ab

bias + ~ab
noise (1)

The gravity vector can also be described with respect to theIMU frame by multiplying~ge by a rotation matrixRbe that
relates the two frames. However, in order to apply this rotation, it is necessary to compute this matrix or, in other words,
to know what are the sensor’s orientation angles in space. To simplify the mathematics, it will be assumed that theIMU
is mounted exactly on the hexarotor’s center of gravity, which in the real case this may not necessarily be true. However,
the chosen approach works well even if the difference between the actual location of the center of gravity and the sensor
location is not very large. Therefore, we assume that the hexarotor frame,b, as shown in figure 1(b)) andIMU frame,
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are coincident. We will also ignore all types of noise that corrupt the signals measured in this case. These considerations
allow us to simplify the previous equation 1 by

~a = ~aIMU = −R
be(φ, θ, ψ)(~ge). (2)

Stripping the above matrix equation and rewriting the angles as functions of the projection of the vector~aIMU on each one
of the IMU axes, it is possible to obtain estimates forφ andθ using the measurements from each of the accelerometers,
as seen in the next equations.

θa = arcsin

(

ax

‖~a‖

)

, (3)

φa = arcsin

(

ay

−‖~a‖ cos θa

)

, (4)

whereax anday are the acceleration measured vector’s components along theIMU x andy axes.
A few assumptions are made at this stage:

Assumption 1 The sensors were mounted along perfectly orthogonal axes. Therefore, the measurements do not present
misalignment bias, or if it exists, it is negligible. In addition, there are no other biases on the sensors, and the measurement
noise is additive, approximately gaussian with zero mean.

Another important point is that the equation 4 may present singularity problems forθa = ±π/2 angles. However, under
normal operating conditions, the pitch angle is restricted to values smallerπ/2. Likewise, it is assumed that the roll angle
is restricted to even lower values than those of the pitch angle.

Assumption 2 The accelerometer is measuring only the gravity vector. This assumption is only valid when the hexarotor
is at an inertial state. Although restrictive, this assumption is valid for the range of movements performed. Therefore, the
low frequency signals from the accelerometers provide reliability to the estimate ofφ andθ. It will be shown later that
this information will be combined with the information from the gyros and magnetometers mounted on the hexarotor. In
the case where the hexarotor is hover,‖~a‖ is equal tog0.

2.2 Atitude estimation based on magnetometers measurements

The earth has a magnetic field. The field lines make their way along a path roughly parallel to the Earth’s surface, the
magnetic south pole toward the north magnetic pole. The sensor that is capable of providing the orientation with respect to
the Earth’s plane is a magnetometer, usually embedded in a digital compass. In the experiments presented in later on, we
show the use of a digital compass composed of two orthogonally mounted magnetometers, which is calibrated to measure
the orientation of the Earth’s magnetic field. In general, only two element sensors are used, mounted in a plane parallel
to the Earth’s plane. As done before, we can represent the signal measured by the compass as a three-dimensional vector
~m composed of the sum of the Earth’s North orientation~N transformed by a rotation matrixRbe in relation to the yaw
angle (ψ), and a noise vector~mnoise, written as.

~m = ~mIMU = R
be(ψ)~N + ~mnoise (5)

Again we make some assumptions in order to simplify the problem of estimating the orientation of the hexarotor:

Assumption 3 The first one, as before, is to the neglect the uncertainties involved in the process.

Assumption 4 Second, we will assume that the plane represented by the two orthogonal magnetometers is always parallel
to the Earth’s plane.

The equation that computes the yaw angle as a function of the magnetometers measurementsmx andmy in the compass
frame. Theψm represents a previous estimate of the hexarotor heading relative to theNED frame, complementing the
angular information.

ψm = arctan

(

my

mx

)

. (6)

2.3 Atitude estimation based on gyrometers measurements

In addition to the accelerometers, theIMU contains three gyroscopes that measure the hexarotor’s angular rates about
the body axes. The gyrometers employed in this work actually measure the Coriolis acceleration caused on a proof
mass by the rotation of the device. As the system operates on the Earth’s surface, measurements from gyrometers and
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accelerometers, are affected by Earth’s rotation,ωearth ≈ 15◦/hour. In this work, however, as the system operation
time and the effects caused by Earth’s rotation are modest when compared to sensor noise, those effects are neglected.
Estimates can be obtained by integrating the differential kinematic equation,~ωmeas = ~ωideal ×ΩSFCC + ~ωbias + ~ωnoise

that describe the system, whereΩSFCC is a3−by−3 matrix of scaling factors on the diagonal and misalignment terms in
the nondiagonal,~ωbias are the biases and~ωnoise are the uncertain parameters, such as gaussian white noise.

As previously seen, one of the problems is that the mathematics of the attitude parameters using Euler angles repre-
sentation present singularities in some of its configurations. This can be harmful to the signal integration process, since
it produces large discontinuities on the final results. Therefore, we chose to use the unit quaternion representation. The
quaternion representation of the gyros is given by

~̇qbe =
1

2
~qbe ⊙

[

0

~ωb

eb,ideal

]

=
1

2
Wideal~q

be =
1

2









0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0









~qbe (7)

where⊙ defines a quaternion product and the calibrated gyroscope signal~ωIMU contains measurements of the angular
velocity ~ωb

eb,ideal from body to earth (eb) expressed in the body coordinate system (b). The quaternion values, in turn, are
obtained by integrating the equation (7), whereωx, ωy andωz are the ideal angular rates corresponding to the roll, pitch
and yaw angles, respectively.

2.4 Attitude data fusion

Kalman filtering proposed by R. E. Kalman in 1960 represents one of the key filtering methods for integrated navi-
gation systems. Extended Kalman filter modified from standard Kalman filter is a popular and efficient nonlinear filter
(Thrunet al., 2006), and is suitable for hexarotor’sUAV attitude estimation; in witch system equation and measurement
equation both are usually nonlinear. As mentioned above, this subsection is concerned with an experiment where an
EKF algorithm is used to fuse the measurements from the sensor unit in order to compute estimates of orientation. The
objective in sensor fusion is to recursively in time estimate the state in the dynamic model,

xk+1 = f(xk,uk,wk), (8)

yk = h(xk) + vk, (9)

wherexk ∈ R
nx denotes the state,yk ∈ R

ny denote the measurements from a set of sensors,wk andvk denote the
stochastic process and measurement noise, respectively. The process model equations, describing the evolution of the
states (attitude) over time are denoted byf : R

nx × R
nu × R

nw → R
nx . Furthermore, the measurement model is given

by h : R
nx ×R

nv → R
ny , describing how the measurements from theIMU relate to the state. The goal is to infer all the

information from the measurements onto the state.
The state vector is chosen to be

xk+1 =















~qbe
k+1

= ~qbe
k +

∆T

2
Wideal,k~q

be
k

~ωb

eb,k+1 = ~ωIMU,k − ~ωb

bias,k − ~ωb

noise

~ωb

bias,k+1 = ~ωb

bias,k + ~ηb

bias

(10)

yk+1 = ~qbe
k+1 (11)

Even though the gyroscope signal is corrected for temperature effects, some low-frequency offset fluctuations~ωb

bias,k

remain, partly due to the unmodeled acceleration dependency. The remaining error~ωb

noise is assumed to be zero mean
white noise. The measurements are not accurate enough to pick up the rotation of the earth. This implies that the earth
coordinate system can be considered to be an inertial frame. In equation (10), all quantities are three dimensional vectors,
except for the orientation which is described using a four dimensional unit quaternion~qbe, resulting in a state vector with
ten elements and∆T is the sampling interval.

The reason for using unit quaternions is that they offer a nonsingular parametrization with a rather simple, bilinear
differential equation which can be integrated analytically and have only four parameters. In contrast, Euler angles have
only three parameters, but suffer from singularities and have a nonlinear differential equation. Furthermore, rotation
matrices have at least six parameters.

The state vector implies that the measurement model is given by accelerometers and magnetometers, expressed by
equation (3), (4) and (6). The quaternion representation of the orientation is given by:

~qbe
am,k+1 =









cos(φa/2) cos(θa/2) cos(ψm/2) + sin(φa/2) sin(θa/2) sin(ψm/2)
sin(φa/2) cos(θa/2) cos(ψm/2) − cos(φa/2) sin(θa/2) sin(ψm/2)
cos(φa/2) sin(θa/2) cos(ψm/2) + sin(φa/2) cos(θa/2) sin(ψm/2)
cos(φa/2) cos(θa/2) sin(ψm/2) − sin(φa/2) sin(θa/2) cos(ψm/2)









. (12)
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Figure 2. Block diagram for hardware in the experimental setup.

The process model of anEKF provides a prediction of the states of the hexarotor’s attitude based on gyroscope measure-
ment. The model predicts the attitude state, and the accelerometer and magnetometer measurements are used to update
the prediction. This may provide greater performance than stand-alone gyroscope. TheIMU process model is the mecha-
nization equations used to derive the hexarotor attitude, velocity, and position. A block diagram of an experimental setup
that was used validate this algorithm is shown in figure 2.

φ̂ = arctan

(

2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

)

; (13)

θ̂ = − arcsin (2(q1q3 − q0q2)) ; (14)

ψ̂ = arctan

(

2(q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3

)

. (15)

3. RESULTS

The section describes a simple master-slave hardware/software architecture for a hexarotorUAV attitude estimation.
The architecture uses the standardUSB communication interface, where a C++ library, which makes possible commu-
nicate an embedded computer with a microcontroller using a standard Linux operational system. TheIMU sensor from
Sparkfun electronics, which is the6−DOF (degree of freedom) version4.0, is used for the experiment, as shown in fig-
ure 2(b). It is composes of three axes accelerometers using the MMA7260Q chip from Freescale, three gyroscopes using
the IDG300 chip with ±300 degree/second from Invensense and magnetic sensors HMC1052L chip from Honeywell.
Thus, it could provide acceleration measurements in three dimensions, angular rate about the three axes and magnetic
measurement in three dimensions, respectively.

The sensor will be attached on the body center of mass of hexarotor to measure the acceleration, angular rate and
magnetic data. The output signals fromIMU sensor are converted by10−bit A/D (Analog to Digital converter) into a raw
value and transferred by LPC2138 ARM7 processor to Embedded Computer for data logging. Then, it was post-processed
by EKF to attitude estimation.

The figure 3, shows theUSB acquisition times response and theEKF processing times about2000 samples for the
first experiment expected average of7.3966ms and2.5991ms respectively, being9.9957ms the total time for a processing
sample. This value depends on the time constant of sensor readings (update rate), which is generally slower than the
embedded computer/microcontroller communication transfer interface. Notice that the graphic shows some peaks with
different amplitude, these peaks probably are retransmissions, because in high level the exception handler did not notice
any error. It happens because interrupt end points send or receive data at fixed intervals and if a communication loss
occurs the system will try to retransmit previous data. This result can be considered reasonable for update rate (sampling
rate) on the hexarotor’s attitude controller and stabilization.

The figure 4(a), illustrates the attitude estimation result when no movement (steady state), we note that has no drift in
the horizontal axis and the figure 4(b) shows independent movements for each axisφ, θ andψ in (degrees) respectively.

The figure 4(b) shows a complete attitude estimation result in real time. The information data are viewed by the sensor
readings and the behavior of the quaternion evolution, we can see that no exceed the unit value and finally their respective
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Figure 3. TheUSBacquisition andEKF processing times to attitude estimation.

(a) Roll (φ), Pitch (θ) and Yaw (ψ) estimation in steady state (hover-
ing).

(b) Roll, Pitch and Yaw independent movements estimated for the
EKF .

Figure 4. Roll, pitch and yaw estimation.

quaternion estimation error.

4. CONCLUSIONS

This paper was presented an attitude estimation method based on theEKF for quaternions. This estimator is built
for attitude control and stabilization of the hexarotor. Future applications will be displayed the integration of a pose and
attitude estimation based onGPS/IMU / computer vision, resulting in an estimator of six degrees of freedom that will be
used for tracking and navigation.
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