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Abstract

A class of plane problems related to the determination of the shear elastic modulus µ of biological tissues is
presented. A non-iterative numerical procedure to obtain approximate solutions to these problems from known
displacement fields is employed. The displacement fields are obtained from quasi-static experiments that are
possible to reproduce in laboratory and are simulated numerically using the Finite Element Method. Results
for the distribution of µ in a long cylinder of rectangular cross-section containing either an eccentric circular
inclusion or an inclusion with a complex geometry are presented. This work is of great interest in the detection
of cancerous tumors and in the differential diagnosis of biological tissues.
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1 Introduction

It is known from experimental observations that abnormal biological tissues have different mechanical
behavior than normal biological tissues [1]. In particular, Krouskop et al. [2] observe that abnormal
tissues are stiffer than normal tissues. To quantify these observations, we consider biological tissues
undergoing small deformations during quasi-static experiments and model these tissues isotropic,
incompressible, and linearly elastic materials [3]. We are then interested on the determination of the
shear elastic modulus µ everywhere inside the elastic body.

The determination of elastic properties of biological tissues from experimental data has been the
subject of intense investigation in recent years. See, for instance, Park and Maniatty [4] and references
cited therein. Recently, Barbone and Gokhale [5] have considered plane problems in linear elastostatics
and have shown that, except for four arbitrary constants, the general expression for the shear elastic
modulus of an isotropic and incompressible material can be determined from two compatible and
linearly independent displacement fields, which can be obtained from two distinct experiments. The
arbitrary constants can be determined from the knowledge of the shear elastic modulus in four distinct
points inside the body. The authors assume that both displacement fields are differentiable.
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In this work, we propose a methodology to determine µ from two linearly independent displace-
ment fields with less restrictive assumptions. Our methodology does not require both any a priori
knowledge of µ inside the body and differentiability of the displacement fields. The methodology uses
a Finite Element Method (FEM) to construct a numerical approximation for µ inside an isotropic,
incompressible, and linearly elastic body in equilibrium that is also in a state of plane strain.

2 The problem statement

Consider a long cylinder in a state of plane strain parallel to its bases and let B be the undistorted
natural reference configuration of a cross section of the cylinder. Points x ∈ B are mapped to points
y(x) = x + u(x), where u is the displacement field, which is assumed to be known in B together
with its boundary ∂B. Park and Maniatty [4] present a brief discussion about different experimental
techniques that can be used to measure the displacement of a point inside the body.

The cylinder undergoes a small deformation and is in equilibrium in the absence of body force, so
that

div T (x) = 0, ∀ x ∈ B, (1)

where T is the stress tensor. We assume that the body is incompressible, isotropic, and linearly elastic,
so that

T = −π 1 + 2µE, (2)

where π is a constraint reaction field, µ is the shear elastic modulus, which may depend on x ∈ B,
and

E = ∇su ≡ 1
2

�
∇u + (∇u)T

�
(3)

is the infinitesimal strain tensor. Observe from (2) that T is determined from both the strain tensor E

and an arbitrary tensor −π 1, which represents the reaction of the body to local changes of volume.
For incompressible materials, any infinitesimal deformation of B must satisfy

tr E = div u = 0. (4)

Substituting both (2) and (3) into (1), we obtain

−∇π (x) + 2 div (µE) (x) = 0, ∀ x ∈ B. (5)

We then consider the inverse problem of determining both the shear elastic modulus µ : B → R2 and
the pressure field π : B → R2 that satisfy the partial differential equation (5), where the displacement
field u : B → R2 is known everywhere in B ≡ B ∪ ∂B and satisfies the kinematical constraint (4).

Barbone and Gokhale [5] and McLaughlin and Yoon [6] show that, in general, the inverse problem
stated above does not have a unique solution. Barbone and Gokhale [5] show, however, that by knowing
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two compatible, linearly independent, and differentiable displacement fields from two experiments
performed on the same body in a state of plane strain, the general expression of µ contains at most
four arbitrary constants. We review these results below with an example and propose a procedure
to compute the arbitrary constants that can be extended to the more general case of µ not being
continuous.

2.1 Considerations about Uniqueness

Let (e1, e2, e3) be an orthonormal basis in R3 associated to a system of rectangular cartesian coor-
dinates with the origin in O. The vectors e1, e2 are parallel to the plane that contains B and e3

is parallel to the axis of the straight cylinder. In this coordinate system, a point is represented by
x + ξ3e3, where x = ξ1e1 + ξ2e2 ∈ B and ξi ∈ R, i = 1, 2, 3. In addition, u = υ1e1 + υ2e2, where

υi ∈ R , i = 1, 2. It follows from (3) that E =
2P

i,j=1

εijei ⊗ ej , where ei ⊗ ej is the tensorial product

between e1 and e2, which is defined by (ei ⊗ ej) ek = δjkei, and εij ≡ 1
2

�
∂υi

∂ξj
+ ∂υj

∂ξi

�
. Since the

cylinder is under plane strain, it follows from (4) that ε22 = −ε11.
Taking the curl of (5) and assuming that u is known everywhere in B, we eliminate π and obtain

the second-order differential equation

L [µ] ≡
�

∂2

∂ξ2
1

− ∂2

∂ξ2
2

�
(µε12)− 2

∂2

∂ξ1∂ξ2
(µε11) = 0 (6)

where L [µ] is a linear operator on µ. Since (ε11)
2 +(ε12)

2
> 0, it is a standard procedure to show that

L is hyperbolic [7] and that the characteristics of L are parallel and perpendicular to the principal
directions of E.

To illustrate the fact that µ can not be determined from Eq. (6) alone and to motivate the intro-
duction of a weak formulation of the inverse problem in Eq. (5) that leads to the determination of µ,
consider an isotopic, incompressible, and linearly elastic cylinder with square cross section in a state
of plane strain perpendicular to its axis. The length of a side of the square section is ξ̄. The cylinder
is subjected to two experiments that yield the homogeneous deformation fields

ε 1
11 (ξ1, ξ2) = −ε 1

22 (ξ1, ξ2) = ε1, ε1
12 (ξ1, ξ2) = 0, (Bi-axial experiment), (7)

ε 2
11 (ξ1, ξ2) = ε 2

22 (ξ1, ξ2) = 0, ε2
12 (ξ1, ξ2) = ε2, (Shearing experiment). (8)

In the bi-axial experiment, the cylinder is being pulled in one direction while being compressed
in the other direction. The resultant forces on both sides have normal components of intensity τ1.
In the shearing experiment, the same cylinder is subjected to tangential forces of intensity τ2 on its
lateral sides. Clearly, the deformation fields (7) and (8) satisfy the constraint (4) identically and, if
ε1 = ε2, refer to the same state of simple shear. In this case, the principal directions, and hence the
characteristics of L in (6), are inclined with respect to each other by an angle of 45 degrees.

Substituting the deformation fields (7) into (6) and solving for µ, we obtain
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µ (ξ1, ξ2) = φ 1 (ξ1) + φ 2 (ξ2) (9)

where φ i, i = 1, 2, are arbitrary functions of its arguments, which can not be determined from the bi-
axial experiment alone. To determine these functions, we substitute (5) together with the deformation
fields (8) into (6). We then get

µ (ξ1, ξ2) = µ0 + µ1ξ1 + µ2ξ2 + µ3

�
ξ2
1 + ξ2

2

�
(10)

where µi ∈ R, i = 0, ..., 3, are arbitrary constants. The expression (10) is presented by Barbone and
Gokhale [5] to illustrate the fact that, except for four arbitrary constants, µ can be determined from
two compatible and linearly independent displacement fields, which yield the deformation fields given
by (7) and (8).

Corresponding to the deformation fields in both (7) and (8), there exist pressure fields π1 and π2

that can be determined from the substitution of (10) together with either (7) or (8) into (5), yielding

π1 (ξ1, ξ2) = 2ε1

�
µ1ξ1 − µ2ξ2 + µ3

�
ξ2
1 − ξ2

2

�
+ π̂1

�
(11)

π2 (ξ1, ξ2) = 2ε2

�
µ2ξ1 + µ1ξ2 + 2µ3ξ1ξ2 + π̂2

�
(12)

where π̂i ∈ R, i = 1, 2, are arbitrary constants of integration.
To determine the constants µi ∈ R, i = 0, ..., 3, in (10) and π̂i ∈ R, i = 1, 2, in (11) and (12), we

assume that the resultant forces τi, i = 1, 2, are known from experimental measurements. Since the
traction field on the boundary is given by t(x, n) = T (x)n, where n is the outward normal to the
boundary at x ∈ ∂B and T is given by (2), we obtain a system of equations for the determination of
the constants above. Even though this system is over-determined, we obtain the solution

2µ0ξ̄ =
τ2

ε2
=

τ1

ε1
, µ1 = µ2 = µ3 = 0, π̂1 = π̂2 = 0. (13)

It then follows from (10) - (12) that µ is constant, which means that the cylinder is homogeneous,
and that πi = 0, i = 1, 2.

The procedure outlined above for the determination of µ from both known deformation fields (7)
and (8) and known resultant forces acting on complementary parts of the boundary of the cylinder
can be extended to the general case of a non-homogeneous cylinder for which µ may not even be
continuous. In this case, the determination of the fields µ e πi, i = 1, 2, is not trivial and requires
the use of numerical methods that allow the construction of approximations to these fields. Below, we
present a weak formulation of the inverse problem for the determination of µ and πi, i = 1, 2, which
together with a Finite Element Method allow the construction of these approximations.

2.2 The weak formulation of the inverse problem

Let u1 and u2 be two compatible and linearly independent displacement fields (see [5]), which are
not necessarily differentiable and are obtained from two distinct experiments performed on the same
body, and let
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Rj
i =

Z
∂iB

�
−πj1 + 2µ∇su

j
�

nidL (14)

be resultant forces that are known on r complementary parts ∂iB, i = 1, ..., r, of ∂B, so that ∂B ≡
rS

i=1

∂iB and ∂iB
T

∂jB 6= ∅, i 6= j. In (6), πj , j = 1, 2, is the pressure field associated with the

displacement field uj and ni is a unit normal to ∂iB. To satisfy the global equilibrium condition, we

must have
rP

i=1

Rj
i = 0, j = 1, 2.

We want to determine the shear elastic modulus µ : B → R2 and the pressure field πj : B → R2, j
= 1, 2, that satisfy both

−∇πj (x) + 2 div
�
µ∇su

j
�

(x) = 0, ∀ x ∈ B (15)

and the expression (14) for known resultants Rj
i , where the displacement field uj : B → R2, j = 1, 2,

is known everywhere in B and satisfy the kinematical constraint div uj = 0.
Now, let L2 (B) be the set of all square-integrable functions given by

L 2 (B) = {ϕ : B → R; |ϕ| 0 < ∞} (16)

where the norm |•| 0 is given by |ϕ| 0 ≡
�R
B
|ϕ|2dA

�1/2

, and let
�H1 (B)

�2 be a Hilbert space defined

by �
H1 (B)

�2
=
¦
v : B → R2; ‖v‖ 1 < ∞

©
(17)

where the norm ‖•‖1 is given by ‖v‖1 ≡
�R
B

(v · v +∇v · ∇v) dA

�1/2

. Here, a displacement field

u ∈ �H1 (B)
�2 is kinematically admissible if it satisfies u = ū on ∂B, where ū is known on the

boundary ∂B, and v ∈ �H1 (B)
�2 is an admissible variation if it satisfies v = 0 on ∂B. We then

introduce S as the set of all admissible displacements and V as the set of all admissible variations.
The weak form of the inverse problem that we shall consider in this work consists of finding µ ∈

L2 (B) and πj ∈ L2 (B), j = 1, 2, that satisfy

−
Z
B

πj tr∇svdA + 2
Z
B

µ∇su
j · ∇svdA = 0, uj ∈ S, j = 1, 2, ∀v ∈ V, (18)

together with (14) for i = 1, ..., r.

The weak form stated above together with a finite element methodology discussed in Aguiar and
Prado [8] allow an approximate reconstruction of µ from the given data uj and Rj

i , j = 1, 2, i =
1, ..., r. Observe that this formulation does not require differentiability of uj . In the next section, we
review briefly the main results of the finite element methodology.
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2.3 The discrete formulation of the inverse problem

We want to construct finite element approximations for the solution (µ, π1, π2) ∈ �L2 (B)
�3 of the

inverse problem given by (18) together with (14) for i = 1, ..., r. For this, we consider a finite element
formulation based on the introduction of discrete problems over finite-dimensional subsets of L2 (B)
and V. The corresponding discrete problems can be solved using direct solvers, as opposed to iterative
solvers used in the literature, such as in Park and Maniatty [4].

We begin by assuming that B ∈ R2 is a polygonal domain composed of m non-overlapping quadri-
laterals Kk ∈ R2, k = 1, 2, ..., m, so that

B =
m[

k=1

Kk (19)

and such that the intersection of any two of these quadrilaterals is either empty, a point, or, a straight
line. For each Kk ⊂ B, the interior of the quadrilateral Kk is non-empty.

Let Kk ∈ R2, k = 1, 2, ..., m, be endowed with the set of nodes xki ∈ K k , i = 1, ..., 4, which are the
vertices of Kk. We shall consider Lagrange finite elements (Kk,Pk, Σk) , k = 1, ..., m, where Pk is a set
of smooth functions ϕ : Kk → R and Σk is a set of degrees of freedom corresponding to the coefficients
ϕ (xki). The functions ϕ are linear combinations of normalized basis functions ϕk i, i = 1, ..., 4, so that
ϕki (xkj) = δij . The functions ϕk i, i = 1, ..., 4, are continuous over Kk. In this way, a finite element
mesh is the union of all the finite elements (Kk,Pk, Σk) , k = 1, ..., m.

Let us denote as N ≡ {x1,x2, ..., xn} ∈ B the complete set of n nodes in B. Then, for each i = 1,
. . . , m, and each k = 1, . . . , 4, xki ∈ K k corresponds to a unique element from N . We define the set
of functions ϕj : B → R, j = 1, ..., n, such that ϕj (x) = ϕki (x) for x ∈ K k. Thus, ϕj is continuous
on B and satisfies ϕj (xi) = δij , i, j = 1, ..., n. In fact, the set of functions ϕj is a finite-dimensional
basis for the set of continuous functions defined by

P =

(
ϕ : B → R|ϕ (x) =

nX
j=1

αjϕj (x) , ∀ (α1, α2, ..., αn) ∈ Rn

)
(20)

We now define the finite-dimensional space Vh as follows

Vh =
n

v ∈
�
C0 (Bh)

�2
: v ∈ (P (B))2, v = 0 on ∂B

o
(21)

where h stands for the characteristic length of the finite element mesh. Observe from (21) that Vh ⊂ V.
A function vh ∈ Vh has the representation

vh (x) =
2nX
i=1

ϑiwi (x) , x ∈ B̄, (22)

where ϑi ∈ R and wi is a vector in R2 of the form
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w2i−1 = (ϕi, 0) , w2i = (0, ϕi) , i = 1, 2, . . . , n, (23)

relative to a fixed orthonormal base, with ϕi being a scalar basis function defined for the ith node in
the set N introduced above. In particular, notice that vh (Xi) = (ϑ2i−1, ϑ2i) for i = 1, 2, ..., n. Each
ϑi, i = 1, 2, ..., 2n, is a degree of freedom associated with Vh. Thus, considering the fact that each
node in N has two degrees of freedom and that vh ∈ Vh, it is convenient to decompose the complete
set of 2 n degrees of freedom into two complementary integer sets Z∗ e Z, such that ϑi = 0, ∀i ∈ Z∗,
and Z ≡ {1, 2, ..., n} \Z∗.

Let us also define the space

L2
h = {µh : Bh → R : µh is piecewise continuous on Bh} (24)

An element µh ∈ L2
h has the representation

µh (x) =
mX

k=1

µkτk (x) , x ∈ B̄, (25)

where µk ∈ R and τk is a scalar basis function, which is piecewise constant, has support in Kk, and is
normalized so that ϕj (x) = δij for x ∈ K i, i, j = 1, ..., m.

Next, we assume that both fields u1 and u2 are known and use the representation given by Eq. (22)
to approximate µ and πj , j = 1, 2, in the form

µh =
mX

k=1

µkτk and πi
h =

mX
k=1

πi
kτk, x ∈ B̄, (26)

where µk ∈ R and πi
k ∈ R, i = 1,2, k = 1, 2, ...,m. We also assume that ∂jB ⊂ ∂B is given by

∂jB =
[

p∈Zj

Dp (27)

where Dp is a side of K p that also belongs to ∂B and Zj is the set of integer numbers that identify
the finite elements with sides contained in ∂jB.

Substituting the Eq. (26) and vh, given by Eq. (22), into both Eq. (14) and Eq. (18), and using the
fact that the coefficients ϑi, i ∈ Z, are arbitrary, these equations can be rewritten as

2mX
q=1

αj
pqω

j
q = 0, p ∈ Z, (28)X

q∈Zi

βj
qω

j
q = Rj

i , i = 1, 2, . . . , r, (29)

where j = 1, 2, and

αj
p(2q−1) = 2

Z
Kq

∇su
j · ∇swpdA, αj

p(2q) = −
Z
Kqtr∇swpdA, (30)
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βj
2q−1 = 2

Z
Dq

�
∇su

j
�

nqdA, βj
2q = −

Z
Dq

nqdA, (31)

ωj
2q−1 = µq, ωj

2q = πj
q . (32)

Then, the discrete inverse problem associated to the problem given by Eq. (14) and Eq. (18) consists
of finding the coefficients ωj

q , j = 1, 2, q = 1, . . . , m, defined by (32) that satisfy the linear system given
by (28) - (31).

In general, the linear system given by (28) - (31) is over-determined. To solve this system, we use the
Singular Value Decomposition algorithm presented by Golub and van Loan (1996). The main input
data are the coefficients on the right side of both Eq. (28) and Eq. (29), the matrix W formed by the
coefficients that multiply ωj

q on the left side of these equations, the dimensions of W , and a tolerance
that yields the largest non-singular, square matrix of W . Here, the tolerance is a non-negative number
below which a singular value of W is considered to be zero. A preliminary study of the influence of
the tolerance on the values of the coefficients µk, k = 1, . . . , m in Eq. (26) allows to conclude that,
for tolerances below 10−8, all the values obtained for these coefficients were physically plausible and
differed very little from each other.

3 Numerical results

We show in Fig. 1 a schematic representation of two experiments that yield both the resultants Rj
i in

(29) and the displacements uj in both (30) and (31). These experiments are carried out on a cylinder
of square cross section containg an eccentric cylindrical inclusion of circular cross section. The length
of a side of the square section is ξ̄ = 50 mm and the radius of the circular section is r = 6mm. The
conditions on the boundary of the cylinder are the same ones considered for the experiments described
in Section 2.1. Here, however, the resulting deformation fields are not homogeneous.

 
Figure 1: Bi-axial and shearing experiments on a cylinder containing an inclusion.
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We have simulated numerically both experiments to obtain the resultant forces Rj
i and the dis-

placements uj . For this, we use the Finite Element package Ansys 5.51 and assumed that the shear
elastic moduli of both the matrix, which is the cylinder without the inclusion, and the inclusion are
given by, respectively, µM = 36 kPa and µI = CR µM , where CR > 0 is the shear modulus contrast
ratio. Observe that CR = 0 corresponds to an empty hole, CR = 1 corresponds to a homogeneous
cylinder, and CR > 1 corresponds to an inclusion that is CR times stiffer than the matrix. In Fig. 2
we show a mesh of finite elements used in the computation of both uj and Rj

i , where the inclusion
is shown on the upper right side. In these simulations we have also obtained approximations for the
pressure fields πj , j = 1, 2.

 
Figure 2: Non-uniform mesh of finite elements to dicretize the square cross section of a cylinder
containing an eccentric inclusion.

With the vectors uj and Rj
i computed from the numerical simulations above, we have solved the

system given by (28) - (32) using the non-uniform mesh of Fig. 2 and computed approximations for
both µ and πj , j = 1, 2, from (26). We have verified that the approximations of πj , j = 1, 2, are in
very good agreement with the corresponding approximations obtained from the numerical simulations
above.

1Ansys 5.5 is proprietary software of Anys Inc., USA.
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In the next two figures we show sequences of frames that use color maps to represent the distribution
of the shear elastic modulus inside the cylinder of square cross section. Each frame has its own color
map, which corresponds to a range of values for µ. The smallest and largest values of µ correspond
to the colors at, respectively, the bottom and the top of the color map. The frames on the upper left
corner in both figures contain exact values of µ and are used as reference frames to be compared with
the other five frames. These five frames are obtained from different finite element meshes, which are
represented in Tab. 1 by increasing numbers of nodes and elements. In particular, Fig. 2 corresponds
to Mesh 5 in Tab. 1.

In Fig. 3 and Fig. 4 we consider the cases CR = 02 and CR = 6, respectively. Comparing the
reference frame (a) in each figure with the other five frames of the same figure and observing the
values in the corresponding legend, we note that µh, defined by (26.a), converges to µ as the mesh is
refined. In both cases, µh → 36 kPa everywhere inside the matrix. Inside the inclusions, we see from
Fig. 3 that µh → 0 kPa and from Fig. 4 that µh → 216 kPa.

Table 1: Finite element meshes for a cylinder with an eccentric inclusion.

Mesh Number of nodes Number of elements
1 733 668

2 931 866

3 1077 1012

4 1218 1153

5 1535 1470

Next, in Fig. 5 we consider an inclusion with a cross section having a complex geometry. The color
maps of both Frame (a) and Frame (b) represent, respectively, the exact and the calculated values of
µ inside the inclusion and the matrix. By comparing both frames, we see that our numerical approach
yields accurate values for µ and is capable of reconstructing the geometry of the inclusion.

2Because of numerical difficulties experienced during the numerical simulations using ANSYS 5.5, we used CR = 10−25

and Poisson’s ratio νI = 0.3 for the inclusion, instead of CR = 0 and νI = 0.5.
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(a)

  
(b)

  
(c)

  
(d)

  
(e)

  
(f)

Figure 3: Reconstruction of µ in a cylinder containing an eccentric circular hole, (CR = 0).
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(a)

  
(b)

  
(c)

  
(d)

  
(e)

  
(f)

Figure 4: Reconstruction of µ in a cylinder containing an eccentric circular inclusion with CR = 6.

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



A numerical procedure for the determination of parameters in an incompressible solid 13

  
(a)

  
(b)

Figure 5: Reconstruction of µ in a cylinder containing an inclusion with a complex geometry.

4 Conclusion

The theoretical approach used in this work to reconstruct the shear elastic modulus µ of an isotropic,
incompressible, and linearly elastic solid in a state of plane strain together with the numerical method
proposed in Aguiar and Prado [8], which is based on a Finite Element formulation described briefly
in Section 2, yield very accurate results. In particular, these results are not sensitive to numerical
errors due (i) numerical simulation of both experiments, which yield approximations to both u1 and
u2 and to the corresponding resultant forces R1

i and R2
i , i = 1, ..., r; (ii) finite element discretization

of the inclusion, which has a non-polygonal geometry, using quadrilateral elements; (iii) use of finite
elements to obtain the displacement fields u1 and u2 that may yield the locking effect, which appear
in the numerical simulation of problems involving incompressible materials. See a discussion about
this effect in Hughes [9].

We are now investigating the application of this numerical method (i) using regular meshes, instead
of the non-uniform meshes used in this work; (ii) in the reconstruction of µ in problems that are
more general than plane problems; (iii) using constitutive relations that take into account viscous and
nonlinear behavior of living tissues.
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