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Abstract

A large number of degrees of freedom is involved in human locomotion and well-coordinated movements of
these degrees of freedom is essential. The main part of this coordination occurs in the central nervous system,
which generates signals according to the desired gait. Nervous networks in the spinal marrow, known as central
pattern generators (CPGs), are capable to produce rhythmic movements. A set of nonlinear oscillators can
be used in control systems of locomotion as pattern generator, providing approximate trajectories for the
legs. The objective of this work is the application of a coupled hybrid van der Pol-Rayleigh oscillators system
for modeling of a bipedal robot. We analyzed a 2D model, with the three most important determinants of
gait, that performs movements in the sagittal plane. Using oscillators with integer relation of frequency, we
determined the response as a function of time and the stable limit cycles of the network formed by three
oscillators, showing the behavior of knee and hip angles. From plotted graphics, the system provided excellent
results when compared to experimental analysis, and we concluded that the use of coupled hybrid van der
Pol-Rayleigh oscillators can represent an excellent method to signal generation, allowing their application for
feedback control of a walking machine, presenting optimized functioning in relation to the systems that use
only van der Pol or Rayleigh oscillators.
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1 Introduction

The objective of the study of mechanical limbs is not only to construct autonomous robots, but also to
help in the rehabilitation of people that suffered some accident. The study of locomotion is inserted in
this context, and the same one has been intensively studied since the second half of twenty century. The
biped gait is one of the most complex in Nature. It requires not only an adequate physical structure,
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but also an extremely accurate control system. Locomotion of humans and animals, performed by
rhythmic and synchronized movements, involves a very large number of degrees of freedom, becoming
essential a good coordination between them. The main part of this coordination is performed by
spinal marrow, which generates signals according to the movement pattern of the desired gait [1].
This process of signal generation can be modeled by a pattern generator, which can be designed as a
network of nonlinear oscillators [2–5].

 
Figure 1: Control system of human locomotion.

Figure 1 presents a diagram of the control system of human locomotion controlled by the central
nervous system, in which the CPG supplies a series of pattern curves. This information is passed to the
muscles by means of a network of motoneurons, and the muscular activity performing the locomotion.
Sensorial information about the environment conditions or some disturbance are supplied as feedback
of the system, providing a fast action of the CPG, which to adjust the gait to the new situation [6].

Oscillators can be used in locomotor control systems similar to the patterns generator of the human
gait, providing approach trajectories of the legs. Each pattern of movement requires a set of oscillator
parameters and couplings. The gait can be modified by changing some parameters. Some kind of
supervisory controller could be imagined, which would deliver and calculate the parameters for the
pattern generator with a desired motion. The pattern of movement depends upon the parameters of
the oscillators as well as the coupling between the oscillators. The generated signals can be used as
reference trajectories for feedback control of a walking machine.
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2 Description of the mechanical model

A feasible modeling of bipedal locomotion is made by reducing the number of degrees of freedom, since
there are more than 200 involved in the human locomotion. According to Saunders et al. [7], the most
important determinants of gait are: the compass gait, that is performed with stiff legs like an inverted
pendulum; the pelvic rotation about a vertical axis; the pelvic tilt; the knee flexion of the stance leg,
which effects combined with pelvic rotation and pelvic tilt achieve minimal vertical displacement of
the center of gravity; the plantar flexion of the stance ankle; and the lateral displacement of the pelvis.

In order to further simplify the investigation, a 2D model that performs only movements in the
sagittal plane will be considered. This model, presented in Fig. 2, characterizes the three most impor-
tant determinants of gait: 1 (compass gait), 4 (knee flexion of the stance leg), and 5 (plantar flexion of
stance ankle). The model does not take into account the motion of the joints necessary for the lateral
displacement of the pelvis, the pelvic rotation, and the pelvic tilt.

 
Figure 2: 2D model with the three most important determinants of gait and the relative angles.

The model used rigid-body assumption, where the natural structural movements of the skin and
muscles, as well as bone deformities, are disregarded. The walking period can be divided into two
intervals: single support phase (SSP), where one of the legs perform the movement of balance while
the other is responsible for the support (the extremity of the support leg is assumed to be not sliding);
and double support phase (DSP), where the transition of the legs occurs, i.e., the balance leg becomes
the support leg and the other leg prepares to initiate the balance movement.
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3 Central Pattern Generator (CPG)

The first indications that the spinal marrow could contain the basic nervous system necessary to
generate locomotion date to the beginning of 20th century. According to Mackay-Lyons [8], nervous
networks in the spinal marrow are capable to produce rhythmic movements, such as swimming, walk-
ing, and jumping, even when isolated of the brain and sensorial inputs. These specialized nervous
systems are known as nervous oscillators or central pattern generators (CPGs).

Some significant works about vertebrate locomotion controlled by CPG include Grillner [9], Pearson
[10], and Collins and Richmond [11]. Human locomotion is controlled, in a way, by a CPG, which is
evidenced in works of Calancie et al. [12], and Dimitrijevic et al. [13].

Nonlinear oscillators system can be used as a central pattern generator. A great number of studies
about the application of this principle has been performed, specially the application in hexapodal [14],
quadrupedal [11] and bipedal models [15–18]. In this work the CPG is formed by a set of hybrid van
der Pol-Rayleigh oscillators, where each oscillator generates angular reference signals for the motion
of a single link (knees and hip).

4 Hybrid van der Pol-Rayleigh oscillator

A hybrid oscillator have characteristics of two types of oscillators and whose equation presents a
combination of terms of these oscillators. Considering the equations of van der Pol:

ẍ− ε
�
1− p(x− x0)

2
�

ẋ + Ω2 (x− x0) = 0 ε, p > 0 (1)

and Rayleigh:

ẍ− δ
�
1− qẋ2

�
ẋ + Ω2 (x− x0) = 0 δ, q > 0 (2)

the equation of hybrid oscillator that will be used in the analysis is:

ẍ− ε
�
1− p(x− x0)

2
�

ẋ− δ
�
1− qẋ2

�
ẋ + Ω2 (x− x0) = 0 ε, p, δ, q > 0 (3)

where ε, p, δ, q and Ω are the parameters of the oscillator. Using y = ẋ, we have the following
autonomous system: (

ẋ = y

ẏ = ε
�
1− p(x− x0)

2
�

y + δ
�
1− qy2

�
y − Ω2 (x− x0)

(4)

Choosing values for ε, p, δ, q, Ω and x0, using a program that integrates ordinary differential
equations (ODE), it is possible to plot the graphic representation of x and ẋ as functions of time and
the trajectory in the phase space.

Setting ε = p = δ = q = Ω = 1 and x0 = 0, and using the Matlab, the graphic representation
illustrating the hybrid van der Pol-Rayleigh oscillator behavior was generated (Fig. 3 and 4). Figure
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3 shows the periodic movement of the oscillator and the limit cycle, while Fig. 4 presents the phase
portrait.

An interesting characteristic of the hybrid oscillator is that depending on the relation between the
values of ε and δ, it assumes a similar behavior to the van der Pol oscillator or Rayleigh oscillator.
More details about the characteristics and behavior of each oscillators with limit cycle cited here are
described in Hebisch [19].

  
Figure 3: Graphical representation of x and ẋ as a function of time, and the limit cycle.

 
Figure 4: Phase portrait of the hybrid van der Pol-Rayleigh oscillator.
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5 Coupled oscillators system

Taking into consideration the model shown in Fig. 2, the hip angle θ9 and the knee angles θ3 and θ12

will be determined by a nonlinear oscillators system. Experimental studies of human locomotion [20]
and Fourier analysis of these data [21] show that the motion of knees and hip angles can be described
very precisely by their fundamental harmonic, whether the biped is in DSP or SSP. Figure 5 shows the
experimental results where θ3m, θ9m and θ12m represent the curves built by means of experimental
studies and θ3h, θ9h and θ12h represent the approximation of these curves using the Fourier analysis.
A set of three coupled oscillators was used to generate the angles θ3, θ9 and θ12. These oscillators are
mutually coupled by terms that determine the influence of one oscillator on the others (Fig. 5).

  
Figure 5: Experimental results and approximation using Fourier analysis, and coupled oscillators
system.

5.1 Oscillators with the same frequency

A network of n-coupled hybrid van der Pol-Rayleigh oscillators is considered. From Eq. (3) and adding
a coupling term that relates the velocities of the oscillators, we have:

θ̈i − εi

�
1− pi(θi − θio)

2
�
− δi

�
1− qiθ̇

2
i

�
θ̇i + Ω2

i (θi − θio)−
nX

j=1

ci,j

�
θ̇i − θ̇j

�
= 0 i = 1, 2, ..., n (5)

where εi, pi, δi, qi, Ωi and ci,j are the parameters of this system.
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For small values of parameters determining the model nonlinearity, we will assume that the response
is approximated by low frequency components from full range of harmonic response. Therefore, peri-
odic solutions can be expected, which can be approximated by:

θi = θio + Ai cos (ωt + αi) (6)

We desired to determine the values of the parameters qi, pi e Ωi. In this case all oscillators have the
same frequency ω. Deriving Eq. (6) and inserting the solutions in Eq. (5), by the method of harmonic
balance [22], the following nonlinear equation system is obtained:8><>: Ai

�
Ω2

i − ω2
�
cosαi + Aiω

h
εi

�
1− A2

i pi

4

�
+ δi

�
1− 3ω2A2

i qi

4

�i
senαi + ω

nP
j=1

ci,j (Aisenαi −Ajsenαj) = 0

Ai

�
ω2 − Ω2

i

�
senαi + Aiω

h
εi

�
1− A2

i pi

4

�
+ δi

�
1− 3ω2A2

i qi

4

�i
cos αi + ω

nP
j=1

ci,j (Ai cos αi −Aj cos αj) = 0

(7)

Moreover, it is possible to verify the following relation proposal by Hebisch [19]:

qi =
εipi

δiω2
(8)

Then, substituting the value of qi in Eq. (7) and solving, the parameters pi and Ωi are:

pi =
1

A2
i

+
δi

A2
i εi

+
1

A3
i εi

nX
j=1

ci,j [Ai −Aj cos (αi − αj)] i = 1, 2, ..., n (9)

Ωi =

Ì
ω2 − ω

Ai

nX
j=1

Ajci,jsen (αi − αj) i = 1, 2, ..., n (10)

Given the amplitude Ai and Aj , phase αi and αj , the frequency ω and the chosen values of εi, δi

and ci,j , the value of the parameters qi, pi and Ωi can be calculated.

5.2 Oscillators with integer relation of frequency

Nonlinear oscillators with frequency ω can be synchronized with other oscillators with frequency nω,
where n is an integer. In analyzing human gait, we can observe that some degrees of freedom have
twice the frequency of the others (n = 2), that can be seen in Fig. 5.

Therefore, a network of coupled hybrid van der Pol-Rayleigh oscillators can be described as:

θ̈h−εh[1−ph(θh − θho)
2] θ̇h−δh

�
1− qhθ̇2

h

�
θ̇h+Ω2

h (θh − θho)−
mX

i=1

ch,i

�
θ̇i (θi − θio)

�
−

nX
k=1

ch,k

�
θ̇h − θ̇k

�
= 0

(11)
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where ch,i

�
θ̇i (θi − θio)

�
is responsible for the coupling between two oscillators with different frequen-

cies, while ch,k

�
θ̇h − θ̇k

�
effects the coupling between two oscillators with the same frequencies.

Using a similar assumption as applied in Section 5.1. we have:

θh = θho + Ah cos (2ωt + αh) (12)

θi = θio + Ai cos (ωt + αi) (13)

θk = θko + Ak cos (2ωt + αk) (14)

Deriving Eq. (12) -(14) and inserting the solutions in Eq. (11), a nonlinear equation system is obtained,
and solving this system, the parameters ph and Ωh are:

ph =
1

A2
h

+
δh

A2
hεh

+
1

4A3
hεh

mX
i=1

A2
i ch,i cos (αh − 2αi) +

1
A3

hεh

nX
k=1

ch,k [Ah −Ak cos (αh − αk)] (15)

Ωh =

Ì
4ω2 +

ω

2Ah

mX
i=1

A2
i ch,isen (αh − 2αi)− 2ω

Ah

nX
k=1

Akch,ksen (αh − αk) (16)

Given the amplitude Ah, Ai and Ak, phase αh, αi and αk, the frequency ω and the chosen values
of εh, δh, ch,i and ch,k, the value of these parameters qh, ph and Ωh can be calculated.

6 Analysis of the system and results

Considering the oscillators system presented in Fig. 5, from Eq. (11) the system can be described as:

θ̈3−ε3[1−p3(θ3 − θ3o)
2] θ̇3−δ3

�
1− q3θ̇

2
3

�
θ̇3+Ω2

3 (θ3 − θ3o)−c3,9

�
θ̇9 (θ9 − θ9o)

�
−c3,12

�
θ̇3 − θ̇12

�
= 0
(17)

θ̈9−ε9[1−p9(θ9 − θ9o)
2] θ̇9−δ9

�
1− q9θ̇

2
9

�
θ̇9+Ω2

9 (θ9 − θ9o)−c9,3

�
θ̇3 (θ3 − θ3o)

�
−c9,12

�
θ̇12 (θ12 − θ12o)

�
= 0

(18)
θ̈12−ε12[1−p12(θ12 − θ12o)

2] θ̇12−δ12

�
1− q12θ̇

2
12

�
θ̇12+Ω2

12 (θ12 − θ12o)−c12,9

�
θ̇9 (θ9 − θ9o)

�
−c12,3

�
θ̇12 − θ̇3

�
= 0

(19)

The synchronized harmonic functions, corresponding to the desired movements, can be written as:

θ3 = θ3o + A3 cos (2ωt + α3) (20)

θ9 = A9 cos (ωt + α9) (21)

θ12 = θ12o + A12 cos (2ωt + α12) (22)

Considering α3 = α9 = α12 = 0 and deriving Eq. (20)-(22), inserting the solution in Eq. (17)-(19),
the necessary parameters of the oscillators (qi, pi and Ωi, i ∈ {3, 9, 12}) can be determined. Then:
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p3 =
4c3,12 (A3 −A12) + 4A3 (ε3 + δ3) + A2

9c3,9

4A3
3ε3

(23)

Ω3 = 2ω (24)

q3 =
ε3p3

4δ3ω2
(25)

p9 =
1

A2
9

+
δ9

A2
9ε9

(26)

Ω9 = ω (27)

q9 =
ε9p9

δ9ω2
(28)

p12 =
4c12,3 (A12 −A3) + 4A12 (ε12 + δ12) + A2

9c12,9

4A3
12ε12

(29)

Ω12 = 2ω (30)

q12 =
ε12p12

4δ12ω2
(31)

From Eq. (17)-(19) and Eq. (23)-(31), and using the Matlab, the graphs shown in Fig. 6 and 7 were
generated; they present, respectively, the behavior of the angles as a function of time and the stable
limit cycles of the oscillators.

These results were obtained using the parameters shown in Tab. 1, as well as the initial values
provided by Tab. 2. All values were experimentally determined.

 
Figure 6: Behavior of θ3, θ9 and θ12 as a function of time.
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Figure 7: Trajectories in the phase space (stable limit cycles).

Table 1: Parameters of hybrid van der Pol-Rayleigh oscillators.

c3,9 c9,3 c3,12 c12,3 c9,12 c12,9 ε3 ε9 ε12 δ3 δ9 δ12

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01 0.01 0.1 0.01

Table 2: Experimental initial values.

Cycle A3 A9 A12 θ3o θ9o θ12o

0 < ωt ≤ π -29 50 10 32 0 -13

π < ωt ≤ 2π -10 50 29 13 0 -32

In Fig. 7 the great merit of this oscillator can be observed, i.e., if an impact occurs and the angle
of one joint is not the correct or desired, it returns after a small number of periods to the desired
trajectory. Considering, for example, a frequency equal to 1 s−1 and null initial velocities, with arbi-
trary initial values: θ3 = -3o, θ9 = 40o and θ12 = 3o, after some cycles we have: θ3 = 3o, θ9 = 50o and
θ12 = -3o.

Comparing the results supplied for the coupling system using hybrid van der Pol-Rayleigh oscillators
with the experimental results presented in recent work about human gait [23], it is verified that the
coupling system supplies similar results, which confirms the possibility of using coupled hybrid van der
Pol-Rayleigh oscillators in the modeling of the CPG. Figures 8 and 9 present the results comparison.
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Figure 8: Behavior of the hip angle in the course of one locomotion cycle.

 
Figure 9: Behavior of the knee angle in the course of one locomotion cycle.

An interesting characteristic of the hybrid oscillators, verified in the course of the tests, is the fact
of it to recover the periodicity of the movement faster than the van der Pol oscillators, using similar
parameters. Therefore, if a small disturbance occurs and the angle of a joint is not the correct or
desired, it is return more quickly to the desired trajectory. This difference in the recovery time is
most significant in relation to the hip angle, but for the angles of the knees a small advantage for the
hybrid oscillator still exists. The same advantage also exists in relation to Rayleigh oscillators, since
the behavior of these is similar to van der Pol oscillators.

Finally, applying the system to the bipedal robot, we obtained the response shows in Fig. 10, which
represents the gait with a step length of 0.63 m. The model have identical legs with 0.37 m for femur
and tibia, and 0.11 for feet. Other step lengths and gaits can be simulated by changing some system
parameters.
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Figure 10: Stick diagram showing the gait with a step length of 0.63 m.

7 Conclusion

The results presented in this work and their analysis and discussion lead us to the following conclusions
about the modeling of a bipedal robot using hybrid van der Pol-Rayleigh oscillators: (1) The use of
these oscillators can represent an excellent way to signal generation, allowing their application for
feedback control of a walking machine by synchronization and coordination of the lower extremities,
presenting optimized functioning in relation to the systems that use only van der Pol or Rayleigh
oscillators. (2) The model is able to characterize three of the six most important determinants of
human gait. (3) By changing a few parameters in the oscillators, modification of the step length and
gait frequency can be obtained. The gait frequency can be modified by means of Eq. (20)-(22) by
choosing a new value for ω. The step length can be modified by changing the angles θ9 and θ12, with
the parameters qi, pi e Ωi, i ∈ {3, 9, 12}, being responsible for the gait transitions.
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