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Abstract

Estimates of the elastic-plastic stress-strain distribution near cracks and crack-like notches under maximum
load and in plane stress were made using a modified form of the Equivalent Strain Energy Density Hypothesis
(here denoted as the GM approach). According to this hypothesis both, the elastic WS and the elastic-plastic
Wσ strain energy densities, have approximately the same value in the region ahead of a crack/crack-like notch.
In the present paper, the WS was estimated integrating the stress-strain relations in the linear-elastic regime.
Using the classical linear elastic fracture mechanics, the principal stresses in the solution for WS were left in
terms of the well known stress intensity factor. This parameter is believed to be the characteristic variable
for crack-like notches. On the other hand, the Wσ was estimated by integration of the bi-axial constitutive
relation for a strain-hardening material using the deformation plasticity theory. Equating the expressions for
both energies, an implicit relation for the maximum stress (σ1max) as a function of the distance from the crack
tip (r) and the ratio between the two non-zero principal stresses (λ), was obtained. A computer code was
developed to numerically solve this implicit relation for σ1max at discrete values of r and for 0.2 ≤ λ ≤ 1.
One fixed K value and three structural materials were considered for the simulation. The resultant matrix of
estimated values for maximum stress field within the plastic zone is presented in various non-dimensional plots.
The λ parameter did not exhibit a strong influence in the crack/notch stress-strain tip fields. For comparison,
the classical HRR solution for elastic-plastic stress fields in cracks was also plotted in the same graph and
good agreement was found with the GM approach. The results can be easily extended to cyclic loading for
using in fatigue design.

Keywords: strain energy density, linear elastic fracture mechanics, crack-like notches.

1 Introduction

Fracture and fatigue behavior of structures with cracks and notches primarily depends on the stress-
strain fields in the vicinity of these discontinuities. For cracks and in small scale yielding conditions, the
crack tip stress-strain fields according to the classical Linear Elastic Fracture Mechanics (LEFM) do
control the fatigue and fracture process, as has been amply demonstrated by the practice of engineering
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in the last decades. This happens in spite of the existence of a small volume of material in front of
the crack (plastic zone) where the stresses are well above the yield point.

The analysis of stress in notches, needed almost exclusively for fatigue design purposes, is performed
with the help of the fatigue stress concentration factor kf . Again the material behavior is assumed
to be linear elastic and the little plasticity, if present, is believed to be confined at a pretty small
region that it can be neglected. By increasing the nominal stress by a factor of kf (or by decreasing
the strength) it is possible to obtain the characteristic variable (maximum local stress) at the tip of
the notch.

Despite the success of the above engineering solutions, many attempts were and are made to find
and use in design the stress-strain fields within the plastic zones. A closed form solution for cracks
was developed by Hutchinson [1] and Rice & Rosengren [2] and named HRR solution since then. For
notches, approximate methods were also developed, the two most used being due to the works of
Neuber [3] and Glinka [4]. Both of the approaches, however, return only scalar values for stress and
strain at the tip of the notch and not the stress-strain fields ahead of the notch. In many cases the
stress-strain field is an important parameter. For example, the fatigue limit in sharp notches, according
to the line method [5], is believed to be the average stress range over certain critical distance, also
called the process zone. The present paper deals with the analogies between crack and notches so as to
develop a new method to estimate the monotonic stress-strain fields near crack-like notches in plane
stress and on the crack plane.

2 Approximate methods to calculate inelastic stress and strain at the tip of notched members (for
elastic nominal stress only)

Notched engineering members are often subjected to nominal stresses that causes localized yielding.
For elastic behavior the values of local strain and stress (ε, σ) can be estimated on the basis of the
theoretical stress (the same as strain) concentration factor kt. At the notch tip a uniaxial state of stress
exists. For this reason, after yielding, i.e., when the product kt·σn > Sy, where σn is the nominal stress
and Sy the yield strength, the localized stresses and strains at the notch tip continue to vary according
to the monotonic stress-strain response of the material, which means that the stress diminishes and
the strain grows. In these cases it is necessary to define separate stress kσ and strain kε concentration
factors as follows:

kσ =
σ

σn
, kε =

ε

εn
(1)

As in the case of stress, εn is the nominal strain. Some approximate methods have been developed for
estimating these notch stresses and strains. Among them, Neuber [3] and Glinka [4] rules are the most
widely used and are well described in textbooks like Dowling [6]. Neuber’s rule can be mathematically
represented by the following equation:

kt =
p

kσ kε (2)
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For localized yielding and uniaxial state of stress εn = σn/E, where E is the elasticity modulus,
applies. One equation relating the product of local stress and strain and the nominal stress times
the stress concentration factor can be obtained substituting this relation in Eq. (1) and the result in
Eq. (2):

kt =
p

kσ kε =
É

σ

σn

ε

εn
=
r

σ

σn

E ε

σn

σ ε =
(kt σn)2

E

(3)

Equation (3) means that, knowing few properties of materials (E, H, n), (being H and n the strength
coefficient and the strain hardening exponent, respectively), the true stress-strain curve, the applied
load and the theoretical stress concentration factor, it is possible to obtain a solution for the local
stress and strain at the tip of the notch (σtip and εtip). In εσ coordinates, Eq. (3) is a hyperbola
((kt·σn)2/E is a constant) whose intersection with equations that model the monotonic or cyclic stress-
strain behavior of material, Ramberg-Osgood ε = σ/E + (σ/H)(1/n) e.g., returns the desired values stress
and strain at the notch tip.

On the other hand, Glinka’s approach [4] is based on the equivalence between the plastic Wσ and
the elastic strain energy density WS at the notch tip and can be mathematically enunciated as in
Eq. (4):

(kt σn)2

2 E
=

σ2

2 E
+

σ

n + 1

� σ

H

� 1
n

(4)

Using some type of iteration or numerical method it is possible to solve Eq. (4) for local stress at the
notch tip σtip. Local strains εtip are then obtained by substituting the local stress in the stress-strain
curve of the material. This method generally gives estimates of local strains and stresses lower than
those obtained by Neuber’s rule. It is worthy to mention that both, Neuber’s and Glinka’s methods, in
the form of Eq. (3) and Eq. (4) are only valid while the nominal stress σn is under the yield strength
Sy of material. It should be emphasized that the results corresponds only to the tip of notches.

3 Modifications proposed to Glinka’s method to calculate inelastic stress-strain fields at notched mem-
bers

Moving into the interior of the notch the state of stress becomes biaxial or triaxial. Suppose that we
are only interested in the crack plane and in the surface of the solid, thereby dealing with plane stress.
Some modifications are necessary to Glinka’s approach in order to deal with this bi-axial stress state.
The elastic strain energy density WS in terms of principal stresses and in plane stress is [7]:

WS =
1

2 E

�
σ2

1e + σ2
2e − 2 ν σ1e σ2e

�
(5)

The subscript e in Eq. (5) denotes an elastic stress. For simplicity’s sake we have considered that
the non-zero components of principal stresses are σ1 and σ2. To express WS as a function of the
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distance r from the notch tip we recall that, for crack-like notches, close relationship exists between
stress concentration analysis and crack analysis, the latter realized by means of fracture mechanics
[8]. In fact, on the crack/notch plane (θ = 0) and in accordance with the classical Irwin’s solution [9]
for the stress tensor at the crack tip, τxy = 0 and both σx and σy are the same and also main stresses
(σx = σy = σ1e = σ2e). For maximum load Eq. 5 then becomes:

WS =
(1− ν)

E
σ2

1e (6)

The plastic zone size in θ = 0 for materials with a power-hardening stress-strain curve was derived
(from HRR solution) by Rice [10] and Schwalbe [11]:

ry_sh =
1

(1 + n) π

�
K

Sy

�2

(7)

In Eq. (7) K is the well known stress intensity factor of fracture mechanics. As ry_sh by Eq. (7) is
2 / (1 + n) times the plastic zone size ry deducted from Irwin’s solution ry = 1/(2π)·(K/Sy)2, the elastic
stress field near a crack tip and consequently the elastic strain energy density should be increased by
a factor of

È
2/ (1 + n):

WS =
2

(1 + n)
(1− ν)

E
σ2

1e (K, r) (8)

For now let the WS as a function of σ1e which in turn is a function of K and r. According to
the strain energy density hypothesis SEDH, in small scale yielding, the strain energy density inside
the notch/crack plastic zone Wσ can be calculated on the basis of a linear elastic analysis, it means
WS = Wσ. The term Wσ is the area under the strain-stress curve, provided this curve represents the
true behavior of material under the actual state of stress. For plane stress, proportional loading (which
means that principal stresses maintain constant ratios) and using the deformation plasticity theory,
a useful relationship between the elastic-plastic principal strain ε1 and the elastic-plastic principal
stress σ1 can be obtained, for a Ramberg-Osgood type stress-strain curve of material, as described in
Dowling [6]:

ε1 = (1− λ ν)
σ1

E
+ (1− 0.5 λ)

�
1− λ + λ2

� 1−n
2n
�σ1

H

� 1
n

(9)

The parameter λ in Eq. (9) is defined as the ratio between principal (in plane) stresses λ = σ2/σ1.
Figure 1 shows an example of the estimates effects that different λ ratios have on the stress-strain
curve of a steel with E = 207 GPa, H = 1655 MPa and n = 0.131. In this case, only for maximum clarity
purposes in the graph, the range of λ has been defined between -1 ≤ λ ≤ 1.

Each point in the plastic zone (at different distances r from the notch/crack tip) will behave accord-
ing to Eq. (9) which is shown in Figure 2 as function of r. Also shown in the figure is the area corre-
sponding to the elastic-plastic strain energy density Wσ. The available expression for the stress-strain
curve is in the form ε1 = f (σ1), so we need to calculate first the complementary strain energy density
Wσ* by simple integration:
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Wσ∗ =

σ1max(r)Z
0

ε1 (r) dσ1 (r) (10)

 
Figure 1: Effect of the ratio between principal stresses λ = σ2/σ1 on a Ramberg-Osgood stress-strain
curve according to Eq. (9) for a steel (ν ∼= 1/3) with E = 207 GPa, H = 1655 MPa and n = 0.131.

 
Figure 2: Elastic-plastic strain energy density Wσ and the complementary energy Wσ* at each point (r
fixed) within the plastic zone of a crack/notch. The elastic-plastic behavior of material is in accordance
with the deformation plasticity theory.
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Since proportional loading has been assumed λ = constant, the stress σ2 grows in the same propor-
tion as does σ1 between zero and σ1max. By substituting Eq. (9) into Eq. (10) and performing the
integration comes up to:

Wσ∗ = (1− λ ν)
σ2

1 max (r)
2 E

+
n (1− 0.5 λ)

�
1− λ + λ2

� 1−n
2n

(1 + n) H 1/n
σ

1
n +1
1 max (r) (11)

From Figure 2 the total area for maximum load is:

σ1 max (r) · ε1 max (r) = Wσ + Wσ∗ (12)

In Eq. (12) ε1max(r) = ε1max (σ1max(r)) from Eq. (9). Performing the required substitutions and
manipulating gives the desired elastic-plastic strain energy density for plane stress:

Wσ =
(1− λν)

2 E
σ2

1 max (r) +
(1− 0.5 λ)

�
1− λ + λ2

� 1−n
2n σ1 max (r)

(1 + n)

�
σ1 max (r)

H

� 1
n

(13)

Equation (13) reduces, as expected, to the right hand side of Eq. (4) for the uniaxial state of stress
(λ = 0) existent at the crack/notch tip (r = 0). Equating the Eq. (8) with Eq. (13) it is possible to
obtain, for maximum load, an expression for the principal elastic-plastic stress-strain field σ1max(r)
within the plastic zone:

2
(1 + n)

(1− ν)
E

σ2
1e (K, r) =

(1− λν)
2 E

σ2
1 max (r) + ...

... +
(1− 0.5 λ)

�
1− λ + λ2

� 1−n
2n σ1 max (r)

(1 + n)

�
σ1 max (r)

H

� 1
n

(14)

A non-singular expression for σ1e(K,r) which, in turn, depends on the applied nominal stress, is
needed. The following section is dedicated to this problem.

4 Non-singular elastic stress fields on the crack plane

The elastic singularity of Irwin’s solution was completely resolved by Creager & Paris’s solution [12]:

σy (r) |θ=0 =
K√
2 π r

h
1 +

ρ

2 r

i
σtip = kt · σn = σy|r=ρ/2

θ=0

=
2 K√
πρ

(15)

This equation, however, depends on the notch/crack tip radius ρ. In order to eliminate this parame-
ter we use a procedure already discussed in Durán et al. [13]. First, an expression for crack tip opening
displacement CTOD is needed. This can be obtained by doubling the displacement uy of a physical
crack of effective size (a + ry_sh) [14]:
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uy =
4
E′ K

É
ry_sh

2 π
(16)

where E’ = E for plane stress and E’ = E/(1-ν2) for plane strain. Substitution of Eq. (7) into Eq. (16)
and doubling the result gives the CTOD for a strain hardening material:

CTOD = 2 uy =
8
E′ K

Ê
K2

2 π (1 + n) π S2
y

=
8 K2

π E′ Sy

Ê
1

2 (1 + n)
(17)

Now using the relation ρ = CTOD/2, the elastic stress distribution in the plastic zone for θ = 0,
or equivalently, the elastic point stresses as function of the distance from crack-tip σy(r) = kt·σn, as
predicted by Creager & Paris [12] can be obtained for a given K:

ρ

2
=

CTOD

4
=

2 K2

π E′ Sy

Ê
1

2 (1 + n)

σy (r) =
K√
2 π r

�
1 +

ρ

2 r

�
=

K√
2 π r

�
1 +

2
r

K2

π E′ Sy

Ê
1

2 (1 + n)

� (18)

Obviously the σy(r) is the σ1e(K,r) we are interested in for using in Eq. (14). After substitution of
Eq. (18) into Eq. (14) we have an analytical implicit expression for the principal elastic-plastic stress
field σ1max(r) within the plastic zone and for a given λ ratio:

(1− ν)
(1 + n) E

K2

π r

�
1 +

2
r

K2

π E Sy

Ê
1

2 (1 + n)

� 2

=
(1− λν)

2 E
σ2

1 max (r) + ...

... +
(1− 0.5 λ)

�
1− λ + λ2

� 1−n
2n σ1 max (r)

(1 + n)

�
σ1 max (r)

H

� 1
n

(19)

Note that for plane stress we use E’ = E. Theoretically Eq. (18) would be valid only for distances
r > ρ/2 from the crack tip. Like the HRR solution, however, inelastic stress-strain from Eq. (19) in the
region of crack-tip blunting (r < 2CTOD) would not be valid because of the very intense deformation
that there exists, which invalidates any analysis based on the consideration of small-scale yielding.

5 Results

A computer code was developed for numerically solving the Eq. 19 at discrete values of r (2 CTOD ≤
r ≤ ry_sh) and for 0.2 ≤ λ ≤ 1. Each element of the matrix of σ1max values with r columns and λ

rows are then substituted into the Eq. (9) to obtain, if desired, the corresponding ε1max(r,λ) values.
Only stress fields are presented in this work.

Non-dimensional plots of stress fields against the distance from the crack/notch tip were used in
order to evaluate the approach developed in this paper. The well established HRR solution
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σy/Sy=(ry_sh/r)(n/n+1) was also plotted for comparison. In this paper we are dealing only with crack-
like notches. Consequently, there is an associated stress intensity factor K which include parameters
like the nominal stress σn, the size of the notch a and the geometry factor F . By fixing a K value,
for example, K = 20 MPa.m1/2, the plots become independent of these parameters. Figures 3 - 5 show
the stress fields as predicted by the Glinka modified (GM) approach (this paper) for extreme values of
λ and its comparison with the well known HRR solution. Note that for plane stress with σ3 = 0, the
parameter λ should be always greater than zero.
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Figure 3: Stress field within the plastic zone for a crack/notch with K = 20 MPa.m1/2 in a Alu-
minum 7075 T-6 part as predicted by Glinka modified (GM) approach (this paper) for extreme values
of λ = σ2/σ1 and comparison with the well known HRR solution.

6 Discussion

As already mentioned, Glinka’s approach [4] has its main field of application in finding approximate
values of the stress-strain at the notch tip after yielding. Both, Neuber and Glinka‘s approaches are also
adapted for alternate loading and then used in low cycle fatigue design. In high cycle fatigue, however,
the well known notch sensitivity phenomenon causes the fatigue limit not to be determined only by
the maximum stress value at the notch tip, mainly for crack-like notches. Knowing the stress fields in
these cases are of major importance. The basic idea under the extension of the Glinka approach deep
inside of the plastic zone, as was done in this paper, and therefore dealing with stress fields in place
of scalar values at the tip of the notches, is for its use in high cycle fatigue design. The preliminary
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Figure 4: Stress field within the plastic zone for a crack/notch with K = 20 MPa.m1/2 in a ASTM A514-
T1 steel part as predicted by Glinka modified (GM) approach (this paper) for extreme values of
λ = σ2/σ1 and comparison with the well known HRR solution.
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Figure 5: Stress field within the plastic zone for a crack/notch with K = 20 MPa.m1/2 in a AISI 1020 Steel
part as predicted by Glinka modified (GM) approach (this paper) for extreme values of λ = σ2/σ1 and
comparison with the well known HRR solution.
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results showed in this work for monotonic loading and the possibility of extending them for fatigue
loading constitute a good and encouraging sign.

The GM approach is strongly dependent on some properties of materials, as can be seen in Eq. (19).
Of course, non-dimensional plots avoid, in part, this dependence. The strain hardening exponent n

is a non-dimensional quantity so that normalized plots are still functions of the materials involved.
Three materials were used in the simulation and its properties were taken mainly from Dowling [6].
These properties are summarized in table 1.

Table 1: Properties of the three materials used for simulation in the present paper [6].

Material
True Fracture Strength

Coefficient
H [MPa]

Strain
Hardening
Exponent n

Strength
[MPa]

Strain

Aluminum 7075-T6 744 0.41 827 0.113

ASTM A514-T1 1213 1.08 1103 0.088

AISI 1020 steel 713 0.96 737 0.19

Besides the reasonably good agreement between the HRR solution and the GM method showed in
Figs. 3-5, the most interesting fact to note after analyzing these figures is that the GM approach has
a normalized stress gradient similar to the HRR solution in all the graphs. According to the HRR
solution this gradient is n/(n+1) while the GM approach (Eq. (19)) does not have an explicit form of
this parameter. This is an excellent indication about the quality on the predictions of the stress fields
by the proposed method.

It should be noted that there was almost no influence of λ parameter in the results. Glinka [15]
has already used the SEDH so as to get the stress field inside the plastic zone. Although he used
a somewhat different approach, the expression for the stress field he got was independent of the
λ parameter. It is worthy to remember that nowadays the widespread use of modern and efficient
computers facilitates the solution of equations like Eq. 19 and the understanding of effects such as the
influence of λ parameter on the estimates of stress fields in crack-like notches.

7 Conclusion

After some modifications to the equivalent strain energy density hypothesis, a new method to estimate
the stress fields in crack-like notches has been developed. Good agreement was found when comparing
the results with a well established analytical solution. The most encouraging result obtained in the
present paper is related to the fact that the normalized stress field gradient by the GM method is very
similar to that of the HRR solution, with differences as low as 15 % in some cases.
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